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1 Electrostatics in Materials

1.1 The Picture

So far, we have only considered electrostatics in vacuum, or in materials that
have a set charge distribution. But how do we get these charge distributions in
the first place? Fundamentally, charges come from charged particles (ie. elec-
trons, protons, etc.). Since the temperatures of everyday material are fairly low
(by particle physics standards), protons bind with neutrons and form nuclei.
These nuclei bind with electrons to form atoms, and atoms bind with other
atoms to create molecules. The complex interactions of atoms and molecules
form the basis of chemistry. Such chemical reactions only involve nuclei and
electrons (which are relatively weakly bound to each other). Nuclear reactions
(involving much higher temperatures) are required to interact between the con-
stituents (neutrons and protons) of nuclei. Since it requires much less energy to
interact chemically, most (classical) materials can be thought of as a bunch of
atoms that (potentially) exchange electrons (negative charges). For historical
reasons, the convention is actually to think of materials having moving posi-
tive charges (e.g. moving electron “gaps”). The amount of moving electrons
(and the ease to which they move) in a material is called the “electrical con-
ductivity”1. A higher conductivity allows more electrons to move and a lower
conductivity allows less electrons to move. Naturally, this produces two ideal
materials in the extremal cases: those with infinite conductivity and with zero
conductivity. We fittingly call these materials “conductors” and “insulators”
(also called “dielectrics”), respectively.

Note that this simple picture is only a classical approximation. If you want to
do real material science, you have to talk about things like band-gaps caused
by quantum effects. If you are interested in this you might want to look into
condensed matter physics.

1Note that it is ions that move in fluids.
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You may ask: How do we move electrons in the first place? In order to move
electrons, you need to leave the electrostatic regime and enter electrodynamics
(or at least magnetostatics). This is therefore a question for later. For now, we
will simply assume that the materials have reached an equilibrium where the
charge distribution is constant in time.

1.2 Conductors

Conductors are ideal materials where charges are allowed to freely move in the
material. An example of a conductor is any metal. Conductors have some
interesting properties (Griffiths, 2017; Purcell and Morin, 2013):

1. E = 0 inside: If there was an electric field inside, then the charges would
move and the system would no longer be in electrostatic equilibrium. The
equilibrium state must therefore be one without an electric field inside.
This equilibrium happens to be stable since any change to the electric
field will move the charges such that a new electric field is created to
counter balance the existing one, giving no total electric field inside.

2. ρ = 0 inside: This must be true by Gauss’ Law if property 1 holds.

3. V = const throughout: The integral over any path inside a conductor is
zero by property 1, so the change in the potential over any path inside is
zero.

4. All charge is on the surface: There is nowhere else for it to be (property
2).

5. E ⊥ surface on boundary: If there was a tangential component of the
electric field on the surface, then the charges would move along the surface
to counter balance the effect.

A nearby external charge can induce a charge on either side of a conductor. This
induction is done through an electric field. In order to keep E = 0 inside of the
conductor, there needs to be an electric field on either side of the conductor in
such a way that it cancels out. Thus, there will be a more negative or positive
charge on one side when compared to the other.

Since the electric field is zero inside of the conductor, this can be used to shield
outside electric fields (such as EM waves) from entering a region of space. This
is called a Faraday cage and can be used, for instance, to shield electrical equip-
ment from radiation from external radio frequency interference.

1.3 Example: Spherical Cavities in a Conductor

This is adapted from problem 2.39 in Griffiths (2017) (see Fig. 2.49 for a visual
guide). Consider a conducting sphere of radius R with two hallowed out spher-
ical cavities of radius a and b. In each cavity, there is a central point charge
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qa and qb, respectively. Find the surface charge densities σa, σb, σR, the field
outside of the conductor and in each cavity, the potentials in all locations, and
the force on the point charges. What would change if there were more than
two cavities with central point charges (e.g. qc, qd, etc.)? What about if a
third charge q were brought near the conductor (answer this qualitatively and
in electrostatic equilibrium)?

The point charges in each cavity will induce surface charges on the boundary of
the cavities. These surface charges will need to be such that a Gaussian surface
at a radius slightly larger than the cavity gives zero net charge, by Gauss’ Law,
since E = 0 inside the conductor. So, the total charge on the surface of cavity
a and b will be −qa and −qb, respectively. By spherical symmetry the charge
will be distributed evenly along the surface, so the cavities will have surface
charge distributions of σa = − qa

4πa2 and σb = − qb
4πb2 . Since the conductor is

initially neutral, it will have have zero total charge. Since there is a charge of
−qa on the surface of cavity a and −qb on the surface of cavity b, there will
need to be a total charge qa + qb on the outside surface of the conductor (since
the charge is zero inside the conductor). Since the conductor has no net charge,
this charge will be distributed evenly along the conductor’s outer surface, giving
that σR = qa+qb

4πR2 .

Using a spherical Gaussian surface, we can easily find that E(r > R) = qa+qb
4πϵ0r2

r̂,
where r is measured from the center of the conducting sphere R. The same
thing can be done for inside the cavities to find that E(ra < a) = qa

4πϵ0r2a
r̂a and

E(rb < b) = qb
4πϵ0r2b

r̂b, where ra and rb are measured from the point charges qa

and qb respectively.

Since we have the electric field at all locations, we can easily find the potentials.
We will set the potential at r → ∞ to be 0. Then, we can integrate inwards to
find that the potential outside of the conductor is V (r ≥ R) = qa+qb

4πϵ0r
. Since con-

ductors are equipotentials, then the potential inside the conductor is therefore
V (ra ≥ a, rb ≥ b, r < R) = qa+qb

4πϵ0R
. The potentials inside each cavity are there-

fore V (ra < a) = qa+qb
4πϵ0R

+ qa
4πϵ0ra

− qa
4πϵ0a

and V (rb < b) = qa+qb
4πϵ0R

+ qb
4πϵ0rb

− qb
4πϵ0b

.

Due to spherical symmetry, there is no force on the point charge in the center
of each cavity. However, any deviation from the exact center will accelerate the
point charges to the cavity surface.

If there were more than two cavities, the same thing would happen near the
cavities (i.e. replace a with c, d, etc. to get σc, E(rc < c), V (rc < c), etc.),
and then the total charge distributed along the outside surface would change to
qa + qb → qa + qb + qc + ... (still uniformly distributed). This would accordingly
change the charge in the electric field and potential equation outside of the
conductor and the normalization of the potentials everywhere, since we set the
zero point at infinity.
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If a third charge were brought nearby the conductor, then the electric field
outside the conductor would change, inducing a charge on the conductor (in
addition to the charge induced by the cavities), changing the distribution of
charge on the outside of the conductor to no longer be uniform (i.e. σR and
E(r > R) would change). However, the charge distributions will not change on
the surface of the cavities and neither will the electric field inside the cavities
(or in the conductor, of course, since it is zero). All the potentials would also
change everywhere, since we set the zero point at infinity.

1.4 Dielectrics

The other simple type of material is an insulator (also called dielectrics). Di-
electrics do not allow currents (motion of charges) within. While they cannot
move charges across themselves, they can polarize in the presence of an electric
field. To give you a picture: Electron clouds in the molecules can be shifted
relative to their nuclei, causing an electric field across the molecule. Thus, there
can still be a change in an external electric field due to the presence of a di-
electric. This effect of is measured by a polarization vector P where the regular
Maxwell equations (i.e. Gauss’ Law and derivatives, such as the defintion of
potential) change like E → E+ 1

ϵ0
P (and P = 0 in vacuum).

In many materials, this polarization vector is proportional to the electric field
P = ϵ0χeE, where χe is a constant called the “electric susceptibility”. Such
materials are called “linear dielectrics”. In such materials, we can simply let
ϵ0 → ϵ ≡ ϵ0χe inside the material and proceed like normal. To formalize this,
we typically use D ≡ ϵ0E+P = ϵE and rewrite Gauss’ law as ∇·D = ρ. Note
that the vacuum acts like an insulator (dielectric) with ϵ = ϵ0.

1.5 Capacitance

If we place two conductors near each other which charge Q and −Q, then since
they are equipotential across their material, we can easily talk about the poten-
tial difference between them. Say they have a potential difference ∆V ≡

´
E·dl.

Since E = 1
4πϵ0

˝
ρ

r2 r̂dτ , then clearly E ∝ Q since doubling ρ doubles Q.
Moreover, ∆V ∝ E so therefore

C ≡ Q

∆V
(1)

where C is some constant of proportionality. We call C the “capacitance” since
it measures the “capacity” to store energy in the system2. Such a setup is called
a “capacitor”.

2The energy is really being stored in the electric field.
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1.6 Example: Parallel-Plate Capacitor

Consider two parallel thin metal plates that are a distance d apart with charge
Q and −Q and area A. Recall that the potential of a uniformly charged plane
is V (z) = σ

ϵ0
z. Since the plane is uniformly distributed, σ = Q

A . The potential

difference between the plates is therefore ∆V = Q
ϵ0A

d. So, the capacitance of
the parallel-plate capacitor is

C =
Aϵ0
d

(2)

Note that if we were to put a dielectric material between the plates, the capac-
itance would be C = Aϵ

d . Thus, to increase the capacitance of a parallel-plate
capacitor you can either increase the area of the capacitor, change the insulator
material in between the plates (increase ϵ), or decrease the distance between
the plates.

1.7 Example: Coaxial Cable Capacitor

Consider two long coaxial cylinders of length l, radius a and b, and charge Q
and −Q. We had found that the potential difference between the cylinders is
∆V = Q

2πϵ0l
ln
(
a
b

)
. Therefore, the capacitance between the cylinders is

C =
2πϵ0l

ln a− ln b
(3)

We can therefore increase the capacitance of the coaxial cable capacitor by
increasing the length of the cylinders, decreasing the ratio of the inner cylinder
radius to the outer cylinder radius, or (as always), by changing the material
inside the capacitor.

2 DC Circuits

2.1 Basics

Electrical circuits are connected by wires (conductors) to allow for the flow of
current. Since conductors are equipotentials, we can talk about the constant
potential V of a wire. In circuit diagrams, wires are written as lines. We have
already talked about capacitors, so we will start there. Since the exact value
(or gauge) of a potential is arbitrary, we cannot measure the potential of a
single wire, but we can measure the potential difference between wires (also
called voltage). A voltage V can be measured across a capacitor (e.g. parallel-
plate capacitor with some insulator in between the plates) with capacitance C
connected by two wires of different potentials. In a circuit diagram, a capacitor
is represented with the intuitive symbol
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V1

C
V2

If the wire on the left has potential V1 and the wire on the right has potential
V2, then the voltage across the capacitor is ∆V ≡ V1 − V2. We could then find
the charge on the capacitor Q = C∆V .3

We can also talk about the current I ≡ dQ
dt , which can be thought of as a flow of

charge4. We can construct electrical components and connect them with wires
of certain potentials. The resistance of the component is measured as R ≡ V

I
and can be thought of as the amount of resistance to a flow of charge (e.g. if the
current is small and the potential difference is large, the resistance is large since
it prevents the flow of charge despite a large voltage). The fact that current
and voltage are proportional (by R) is called Ohm’s Law5:

V = IR (4)

A component whose purpose is to provide resistance is called a “resistor” and
is denoted with the circuit symbol

R

To actually power a circuit, we need to provide it with something that creates a
voltage6 and close the circuit (otherwise current cannot flow). Typically this is
done with, for example a battery that creates a voltage/current through chem-
ical reactions. An ideal battery is just a voltage source. Voltage sources (with
open circuit voltage ϵ, also known as the “electromotive force”) are denoted
with the symbol

ϵ

3Note that typically we drop the deltas for voltage when doing circuits since it is always a
potential difference. From here on we will drop them.

4Be careful with this idea though: This is not the speed of power transfer. While a light
bulb turned on by a switch across your room happens almost instantaneously, electrons really
only move at the crawling speed of only around a centimeter a minute! This will likely be
better explained in a course on magnetism.

5For now, since we have not yet discussed current in electromagnetism, you will have to
take my word that this is true (most of the time). A magnetostatics course will better motivate
Ohm’s Law. Note that this is not true for certain electronic components: Such components
we call ”non-ohmic” (e.g. a diode).

6Or current, but we will just consider voltage power supplies for now.
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where the longer end denotes the positive terminal (higher potential) and the
shorter end denotes the negative terminal (lower potential). We conventionally
define current as positive charges moving from positive to negative. If this volt-
age supply is connected to a close circuit, this potential difference will cause an
electric field along the wires, allowing the mobile charges in the wires to flow
from the positive to the negative terminal.

Since batteries are not ideal, they actually have some small resistance r to them.
This resistance, by Ohm’s law, means that the voltage across the battery (when
connecting it to a close circuit) is really V = ϵ − rI where I is the current
passing through the battery due to the circuit. So, if there is no current flow,
the battery is ideal, but if the current is too large, then the battery eventually
breaks down and does not deliver any voltage at all7. The circuit diagram

ϵ

r

R

Battery

describes such a battery, where the dotted region denotes the battery. Note
that you can connect the open circles to any circuit. The circuit in between the
open circles determines the current I. If we indeed do connect a battery with
electromotive force ϵ and resistance r with a resistor R, then the current will
happen to be I = ϵ

r+R . We will see how you can determine this yourself in the

next section. The power across a resistor R is P ≡ IV = I2R where I is the
current passing through the resistor.

2.2 Kirchhoff Laws

It would be useful to have a systematic way of solving for given quantities (i.e.
voltage, current, resistance, capacitance, etc.) in circuits. There are two useful
rules that help with this in DC circuits: Kirchhoff’s Current Law and Kirch-
hoff’s Voltage Law.

Kirchhoff’s Current Law (KCL) states that any closed loop in an electrical
circuit, the sum of the potential differences (voltages) of each of the components
is zero. Equivalently, this means that

7This will usually break your battery.
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n∑
k=1

Vk = 0 (5)

with signed voltage values Vk (positive if loop is along the current from the
voltage source and negative if not). You can use Ohm’s Law to deal with the
voltage drop across resistors (where it is negative if the loop is along the current
passing through the resistor and positive if it is against the current). This can
be used to find how the voltage propagates in an electrical circuit.

Kirchhoff’s Voltage Law (KVL) states that any node in an electrical circuit, the
sum of currents flowing into that node is equal to the sum of currents flowing
out of that node. Equivalently, this means that

n∑
k=1

Ik = 0 (6)

with signed current values Ik (positive if going into, negative if going out of).
This can be used to find how the current propagates in an electrical circuit.

2.3 Equivalent resistance

If you do many of these Kirchhoff Law examples, you might notice that it be-
comes somewhat tedious for a large amount of resistors. To avoid having to deal
with a mess of equations, we can simply a bunch of resistors to one equivalent
resistor where we can use Ohm’s Law or Kirchhoff’s Laws much easier. There
are two simple scenarios where you can build equivalent resistances: Those in
series and in parallel.

Consider two resistors R1 and R2 in series

R1 R2

Then, the equivalent resistance (if you were to put a single resistor in between
the open circles with same resistance as seen by the rest of the circuit) is

Req = R1 +R2 (7)

Consider two resistors R1 and R2 in parallel.

R2R1
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Then, the equivalent resistance is

1

Req
=

1

R1
+

1

R2
(8)

You can also chain many of these equivalent resistances together to solve many
(but not all) combinations of resistors. Note that you can prove these equivalent
resistance rules directly yourself from Ohm’s Law and Kirchhoff Laws if you add
a battery to the circuit and close it.

2.4 Equivalent capacitance

Capacitors also have equivalence rules. For capacitors C1 and C2 in series, the
equivalent capacitance is

1

Ceq
=

1

C1
+

1

C2
(9)

For capacitors C1 and C2 in parallel, the equivalent capacitance is

Ceq = C1 + C2 (10)

Note that this is sort of the opposite of the equivalent resistance rules.

2.5 Aside: Voltage Divider

KVL and Ohm’s Law can be used to combined the voltage divider to find the
voltage in one step (for simple circuits with series resistors only and one voltage
source). The formula is

Vi =

(
Ri

Req

)
Veq (11)

where Vi is the voltage across a given resistor i, with resistance Ri, and where
Veq is the source voltage for the circuit and Req is the equivalent resistance.

2.6 Thévenin’s Theorem

Using Kirchhoff’s laws requires you to re-evaluate the whole circuit even if you
change a single resistor. It would be useful to have a rule that allows for a
certain part of the circuit to be abstracted to an equivalent circuit (like the
equivalent resistance and capacitance). This is called Thévenin’s theorem. The
equivalent circuit we would like to create is shown in Figure 1 where RL is
some load resistor in the circuit (or equivalent resistance), ϵeq is the equivalent
“Thévenin voltage” and Req is the equivalent resistance (as seen by the load re-
sistor). Notice that this form looks like an effective battery for the load resistor.
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Thévenin’s method is

1. Remove the load resistor RL and calculate the open circuit voltage across
the gap (called the equivalent Thévenin voltage) ϵeq.

2. Calculate Req as the equivalent resistance of the circuit connected to the
load if all voltage sources were turned off (shorted).

ϵeq

Req

RL

Thévenin equivalent

Figure 1: Thévenin’s circuit.

In order to use Thévenin’s theorem for many different voltage sources, it is
useful to use the Superposition Theorem. This principle allows us to calculate
the influence of each source of voltage8 individually on a given component in a
circuit. When removing voltage sources, a short-circuit is placed in the circuit9.
This method works due to the linearity of Kirchoff’s current and voltage laws,
and ultimately from the superposition principle in EM (where you can simply
add potentials or electric field components for different charge distributions).

Note that just like there are voltage sources, there are also current sources.
There is in fact an equivalent theorem to Thévenin’s Theorem called “Norton’s
theorem” for current sources with equivalent resistances that are parallel to the
load resistance RL. There are also things that are equivalent to a capacitor
but store energy in the magnetic field instead of in the electric field called
“inductors”.

2.7 Example: Complex Circuit

Consider the circuit in Figure 2. Let B1 = 12 V, B2 = 6 V, R1 = 1.5 kΩ, R2 =
3 kΩ, RL = 1 kΩ, find the currents through all resistors. Replace the dashed
line of the circuit by a Thévenin equivalent circuit (Figure 1) with resistance
Req and electromotive force ϵeq.

8Or current source.
9Analogously, a break is inserted in place of current sources
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B1

R1

B2

R2

A

RL

B

Thévenin equivalent

Figure 2: The complex circuit used in this lab to test the Thévenin theorem.

First, we can find that RL = 1 kΩ. Consider a current I1 along the wire with R1

(going into the top node), I2 along the wire with R2 (going out of the top node)
and I3 along the wire with RL (going out of the top node). Using Kirchhoff’s
laws and Ohm’s law (across the resistors) gives:

I1 − I2 − I3 = 0

B1 −R1I1 −RLI3 = 0

B2 −R2I2 +RLI3 = 0

Solving gives

I1 =
(B1 +B2)RL +R1B2

RL(R1 +R2) +R1R2
= 3 mA

I2 =
(B1 +B2)RL +R2B1

RL(R1 +R2) +R1R2
= 6 mA

I3 =
B1

R1
= 8 mA

To solve for the Thévenin equivalent circuit, we will first find ϵeq ≡ VAB . We
can the principle of superposition and break the circuit in two: Circuit 1 (Figure
3, where B1 is “turned on”) and Circuit 2 (Figure 4, where B2 is “turned on”).
To solve for VAB = V2 in Circuit 1, we can use the voltage divider equation
(Equation 11) giving
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VAB,1 =

(
R2

R1 +R2

)
B1

To solve for VAB = −V1 in Circuit 2, we can use the voltage divider equation
(Equation 11) with a negative due to the polarity of the source, giving

VAB,2 = −
(

R1

R1 +R2

)
B2

When combining the results by superposition (VAB = VAB,1 + VAB,2) we get

ϵeq =

(
R2B1 −R1B2

R1 +R2

)
= 6 V

B1

R1

R2

A

Figure 3: Circuit 1 using the Thévenin method, considering the B1 to be on
and the other sources off.

R1

B2

R2

A

Figure 4: Circuit 2 using the Thévenin method, considering the B2 to be on
and the other sources off.
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Since the resistors R1 and R2 are in parallel, the equivalent resistance of the
Thévenin circuit is

Req =
R1R2

R1 +R2
= 1 kΩ

2.8 Aside: AC Circuits

So far we have only discussed “direct current” (DC) circuits. In such circuits,
current only moves in one direction. There are also “alternating current” (AC)
circuits, that have a variable (often sinusoidal) current. These circuits are what
the power grid is based on and therefore is what comes out of your wall (even
though most household electronics convert this power to DC before using). AC
circuits change dynamically in time and so are a bit more complicated and
involve solving differential equations. It is common to Fourier transform to
solve such equations, making it not as complicated. We will not discuss such
circuits here, but if you take further physics or electrical engineering courses,
you will certainly see them in some circuits course.
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