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1 Vector Calculus

1.1 Vector Fields

Vector calculus is effectively the study of derivatives and integrals of multi-
variable functions instead of single variable functions that you are used to. The
basic structure is the “vector field”, a function F with multiple components
(denoted Fi) coupled to some vector basis. In physics, we usually use three
component vector functions F(x, y, z) with some basis such as the Cartesian
coordinate axes {̂i, ĵ, k̂}).1 For example, in Cartesian coordinates,

F(x, y, z) = Fx̂i+ Fy ĵ+ Fzk̂ (1)

These vector equations can be visualized by assigning to every point on the x-y
plane a vector direction and magnitude corresponding to the vector field evalu-
ated at that point. For example, we could represent F = (x+y)̂i+(y−x)̂j with:
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1Note that a vector can almost be thought of as just the collection of three functions, each
with dimension three. However, vectors (at least in physics) also have the additional property
of having some level of coupling to the space that they are in. Namely, vectors depend on
the basis you use and thus changes in a predictable way when changing coordinate systems
(i.e. all vectors transform in the same way when changing your coordinate system from, say,
Cartesian to spherical polar). This is also true of 4-vectors.
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You can also express these vectors in different coordinate systems. Every coor-
dinate system is defined by a set of variables (e.g. x, y, z) and a basis (e.g. {̂i,
ĵ, k̂})2. To transform a vector to new set of coordinates, you simply need to
define the relations between the variables and the basis and substitute. For ex-
ample, spherical coordinates (r, θ, ϕ)3 can be converted to and from Cartesian
coordinates using


x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ


x̂ = sin θ cosϕ r̂+ cos θ cosϕ θ̂ − sinϕ ϕ̂

ŷ = sin θ sinϕ r̂+ cos θ sinϕ θ̂ + cosϕ ϕ̂

ẑ = cos θ r̂− sin θ θ̂

(2)


r =

√
x2 + y2 + z2

θ = tan−1(
√
x2 + y2/z)

ϕ = tan−1(y/x)


r̂ = sin θ cosϕ x̂+ sin θ sinϕ ŷ + cos θ ẑ

θ̂ = cos θ cosϕ x̂+ cos θ sinϕ ŷ − sin θ ẑ

ϕ̂ = − sin θ x̂+ cosϕ ŷ

(3)

And cylindrical coordinates (s, ϕ, z) can be converted to and from Cartesian
coordinates with


x = s cosϕ

y = s sinϕ

z = z


x̂ = cosϕ ŝ− sinϕ ϕ̂

ŷ = sinϕ ŝ+ cosϕ ϕ̂

ẑ = ẑ

(4)


s =

√
x2 + y2

ϕ = tan−1(y/x)

z = z


ŝ = cosϕ x̂+ sinϕ ŷ

ϕ̂ = − sin θ x̂+ cosϕ ŷ

ẑ = ẑ

(5)

Note that 2D polar coordinates relations can be obtained by using cylindrical
coordinates and ignoring the z component4. There are a lot of useful formulae
like this, for example, in the appendices of Purcell and Morin (2013) or at
the back of Griffiths (2017) or Jackson (1998). These three coordinate systems
(Cartesian, spherical and cylindrical) are the easiest to use since they all describe
some common symmetry.5

2Note that sometimes î, ĵ, k̂ are written as x̂, ŷ, ẑ.
3Using the physics convention, where θ is the polar angle, ranging from 0 to π, and ϕ is

the azimuthal angle, ranging from 0 to 2π.
4If you want to memorize these for some reason, you only need remember the spherical

coordinate transformation and let θ → π/2 to get the cylindrical coordinate transformation.

This makes r̂ → ŝ and leaves ϕ̂ and ẑ unchanged.
5There are, of course, other convenient coordinates to use when you have other symmetries.

It is common when you have some toroidal symmetry (e.g. when calculating the inductance
of a toroid, or studying a torodial magnetic field around a supermassive black hole) to use
toroidal coordinates.
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1.2 Partial derivatives

In order to describe the change of multivariable functions, we need to define
derivatives. If you want to find how a single variable function changes with its
parameter, it is the total derivative. Namely, the derivative of f(x) is

df

dx
= lim

h→0

f(x+ h)− f(x)

h
(6)

Scalar fields (multivariable functions that return a single value) have multiple
variables that they depend on. Therefore, we will have many different partial
derivatives (one for each parameter of the function) and so the definition of the
derivative must be updated. The limit definition of the x partial derivative of a
three variable scalar field T (x, y, z) is

∂T

∂x
= lim

h→0

T (x+ h, y, z)− T (x, y, z)

h
(7)

And similarly ∂T
∂y and ∂T

∂z can be defined in this way6. This effectively means
that you take the derivative of the function in the direction of the variable to
which you took the derivative of (and thus ignore the other variables). You
can generalize this to any possible direction v by scaling these sort of “basis
derivatives” using the directional derivative

∇vT (x, y, z) = vx
∂T

∂x
+ vy

∂T

∂y
+ vz

∂T

∂z
(8)

This measures the change in the scalar field T with respect to the direction
v. This is useful for example if you want to find how much the temperature
changes in a particular direction around a point7.

1.3 Gradient, Divergence and Curl

Now, we move on to derivatives of vector fields. There are three kinds of deriva-
tives in vector calculus: 1) One that takes a scalar field (function taking x, y,
z and returning a single value) and returns a vector field, 2) One that takes a
vector field and returns a scalar field, and 3) One that takes a vector field and
returns a vector field. They are called the gradient, the divergence and the curl,
respectively.

We define the gradient of a scalar field T in Cartesian coordinates as

∇T ≡ ∂T

∂x
x̂+

∂T

∂y
ŷ +

∂T

∂z
ẑ (9)

6Sometimes the partial derivative notation is shortened to just ∂xT
7Note that there are many other notations used for directional derivatives such as DvT or

∂vT .
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The gradient measures the direction of maximum change in T at a given point
(effectively the maximum directional derivative at that point). Note that this
changes depending on your coordinate system not only because the new coor-
dinate values depend on the variables (so there will be chain rules), but also
that the vector bases depend on the variables (see e.g. equation 3). In this way,
scalar fields are different from vector fields, because vector fields have additional
transformation under coordinate changes. In spherical coordinates, it is

∇T =
∂T

∂r
r̂+

1

r

∂T

∂θ
θ̂ +

1

r sin θ

∂T

∂ϕ
ϕ̂ (10)

And in cylindrical coordinates, it is

∇T =
∂T

∂s
ŝ+

1

s

∂T

∂ϕ
ϕ̂+

∂T

∂z
ẑ (11)

It is convenient to define the nabla operator as

∇ ≡ ∂

∂x
x̂+

∂

∂y
ŷ +

∂

∂z
ẑ (12)

where whenever it is placed in front of a scalar function, it takes the correspond-
ing derivatives. Then, we can easily define the divergence of a vector field v,
in Cartesian coordinates, as

∇ · v ≡ ∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

(13)

The divergence of a vector field measures the amount of sources or sinks in the
field that there are. If the divergence is zero at a point, there are no sources or
sinks at that point, if it is positive it is a source, and if it is negative it is a sink.
In spherical coordinates, the divergence is instead

∇ · v =
1

r2
∂

∂r

(
r2vr

)
+

1

r sin θ

∂

∂θ
(sin θvθ) +

1

r sin θ

∂vϕ
∂ϕ

(14)

And in cylindrical coordinates, it is

∇ · v =
1

s

∂

∂s
(svs) +

1

s

∂vϕ
∂ϕ

+
∂vz
∂z

(15)

The curl of a vector field v is defined, in Cartesian coordinates, as

∇× v ≡
(
∂vz
∂y

− ∂vy
∂z

)
x̂+

(
∂vx
∂z

− ∂vz
∂x

)
ŷ +

(
∂vy
∂x

− ∂vx
∂y

)
ẑ (16)
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The curl can be interpreted as measuring the amount of swirling of the vector
field v around a given point. The returned vector defines the normal to the
motion of the swirl. In spherical coordinates, it is

∇× v =
1

r sin θ

(
∂

∂θ
(sin θvϕ)−

∂vθ
∂ϕ

)
r̂

+
1

r

(
1

sin θ

∂vr
∂ϕ

− ∂

∂r
(rvϕ)

)
θ̂ (17)

+
1

r

(
∂

∂r
(rvθ)−

∂vr
∂θ

)
ϕ̂

The cylindrical coordinate version is

∇× v =

(
1

s

∂vz
∂ϕ

− ∂vϕ
∂z

)
ŝ

+

(
∂vs
∂z

− ∂vz
∂s

)
ϕ̂ (18)

+
1

s

(
∂

∂s
(svϕ)−

∂vs
∂ϕ

)
ẑ

The product rules also transfer to vector calculus. The product rules in vector
calculus, for scalar fields f , g, and vector fields A, B are

∇(fg) = f(∇g) + g(∇f) (19)

∇(A ·B) = A× (∇×B) +B× (∇×A) + (A · ∇)B+ (B · ∇)A (20)

∇ · (fA) = f(∇ ·A) +A · (∇f) (21)

∇ · (A×B) = B · (∇×A)−B · (∇×A) (22)

∇× (fA) = f(∇×A)−A× (∇f) (23)

∇× (A×B) = (B · ∇)A− (A · ∇)B+A(∇ ·B)−B(∇ ·A) (24)

There are also second derivatives. It is useful to know that

∇ · (∇×A) = 0 (25)

∇× (∇f) = 0 (26)

And that there is a common second derivative operator called the Laplacian
defined as ∇2 ≡ ∇ · ∇. in Cartesian coordinates, the Laplacian acting on a
scalar function T is

∇2T =
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
(27)
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In spherical coordinates, it is

∇2T =
1

r2
∂

∂r

(
r2

∂T

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂T

∂θ

)
+

1

r2 sin2 θ

∂2T

∂ϕ2
(28)

In cylindrical coordinates, it is

∇2T =
1

s

∂

∂s

(
s
∂T

∂s

)
+

1

s2
∂2T

∂ϕ2
+

∂2T

∂z2
(29)

Now, we will move on to integrals of vector fields.

1.4 Line, Surface and Volume Integrals

Just as there are multiple types of derivatives, there are multiple types of in-
tegrals. These integrals occur over all points on a line (1D), surface (2D) or
volume (3D). The line integral of a vector field v over a line with differential
tangent vector dl (tangent vector at each point along the curve) from point A
to B is

ˆ B

A

v · dl (30)

Line integrals that have closed paths (where A = B) are denoted with a circle
around the integral sign (

¸
). Work is an example of a line integral. It is the

line integral over the path you move through a force (vector) field F, namely of
F · dl. You can calculate a line integral by parameterizing the line (i.e. finding
relations between e.g. dx, dy, dz and some parameter dλ) and then integrating
using the corresponding line element (listed Cartesian, spherical and cylindrical
below)

dl = dx x̂+ dy ŷ + dz ẑ (31)

dl = dr r̂+ rdθ θ̂ + r sin θdϕ ϕ̂ (32)

dl = ds ŝ+ sdϕ ϕ̂+ dz ẑ (33)

There is a fundamental theorem for line integrals which relates it conceptually
to gradients. Such fundamental theorems (there is one for each type of integral)
allow you to reduce the number of integrals you perform if the object you are
integrating has some special property. In this case, you can remove the integral
if the vector field is a gradient of some scalar field (this is not always true). This
theorem is called the gradient theorem where

ˆ B

A

(∇T ) · dl = T (B)− T (A) (34)
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Line integrals that are depend on the path are called path-dependent. If they
are path independent, then the vector field that generates the line integral v is
called conserved and can be written as the gradient of some scalar field v = ∇T .
This implies that any closed integral will be zero by the fundamental theorem
of calculus (or that any general integral will only depend on its end points).

Surface integrals are taken over a surface with differential area normal of da.
The area normal is simply the normal vector pointing out from a patch of the
surface at a given point. The surface integral of a vector field v over a surface
S with differential normal area vector da is

ˆ B

A

v · dl (35)

To calculate a surface integral, you typically break the surface into parts where
you know the explicit form of the differential area normal (you can deduce them
intuition and using the differentials from equations 31, 32 and 33) and sum each
integrated part. There is a fundamental theorem associated to surface integrals.
It is called the curl theorem (also known as Stokes’ theorem or Kelvin–Stokes
theorem) and it relates surface integrals of the curl of a vector field v (over
a surface S) to line integrals of v over their closed boundary (denoted ∂S).
Namely,

¨
S

(∇× v) · da =

˛
∂S

v · dl (36)

Volume integrals are taken over a volume with differential volume element
dτ .8 The volume integral of a scalar field T over a volume V with differential
volume dτ is

˚
V

Tdτ (37)

You can calculate a volume integral using the differential volume elements ob-
tained by finding the Jacobian (see any vector calculus textbook for how to do
this). The common ones (Cartesian, spherical and cylindrical, respectively) are

dτ = dxdy dz (38)

dτ = r2 sin θ dr dθ dϕ (39)

dτ = sdsdϕdz (40)

8The use of τ is to prevent confusing with the electric potential V .
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There is also a fundamental theorem associated to volume integrals called the
Divergence theorem (also known as Gauss’s theorem9 or Ostrogradsky’s theo-
rem). It reduces volume integrals to (closed) surface integrals when integrating
over the divergence of a vector field v. Namely,

˚
V

(∇ · v)dτ =

‹
∂V

v · da (41)

That is all the vector calculus we need. If you want examples on how to use
vector calculus in detail, see the many examples in Schey (1996).

1.5 Aside: Dirac Delta Function

Consider the vector field v = r̂
r2 (in spherical coordinates). This vector field is

commonly encountered since it describes a point source field with inverse-square
strength drop off as you move away from the source. The divergence of the field
is

∇ · v =
1

r2
∂1

∂r2

(
r2

1

r2

)
= 0

This seems to somehow suggest that there is no source. This implies that the
integral of ∇ · v over the volume of a sphere of radius R centered at the origin
should be zero. To get a better look, let’s find the corresponding surface integral
at the boundary of the volume.

˛
v · da =

ˆ (
1

R2
r̂

)
·
(
R2 sin θdθdϕ r̂

)
= 4π

But we expected this to be zero by the divergence theorem. What is going
wrong? The issue arises from the point of discontinuity at r = 0. By defining
the vector field as v = 1

r2 r̂, we implicitly assumed that r ̸= 0. Normally, this
would not matter since a single point should not contribute much to an integral
over a large region, however in this case, the only contribution to the integral is
from the central point. Somehow, there is a sort of infinite divergence at r = 0
so that when summing it over the volume we should get 4π.

This is very annoying, since we have to be very careful when taking derivatives
like this. The way to get around this is with Dirac delta functions δ(x). A Dirac
delta function is infinite at x = 0 and zero everywhere else, but has the unique
property that when integrating over you get a finite value. Specifically,

δ(x) =

{
∞, if x = 0

0, if x ̸= 0
(42)

9Not to be confused with Gauss’s law, or the million other things named after him.
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but

ˆ ∞

−∞
δ(x)dx = 1 (43)

Of course, we can shift the place of infinity to x = a by simply using δ(x− a).
The definition also allows the Dirac delta to pick out a value of a function when
integrated over. In summary,

ˆ ∞

−∞
δ(x− a)f(x)dx = f(a) (44)

This can be generalize to three dimensions with the three dimensional Dirac
delta δ3(x) ≡ δ(x)δ(y)δ(z), as

ˆ
R3

δ3(x− a)T (x)dτ = T (a) (45)

If we do everything again carefully using the three-dimensional Dirac delta func-
tion, we would find that the divergence of our original vector function is

∇ ·
( r̂

r2

)
= 4πδ3(r) (46)

Note that the four pi comes from the integral over the volume in spherical
coordinates.

2 Electrostatics

2.1 Coulomb’s Law

When charges do not move or are sufficiently slow, we are in the electrostatic
regime. In this regime, we can use the famous Coulomb’s law. Namely, the
force due to a charge q1 acting on a charge q2 is

F2 = k
q1q2
r221

r̂21 (47)

where r21 ≡ r21r̂21 is the displacement vector pointing from charge q1 to charge
q2.

10 The constant k = 8.988× 109 Nm2C−2 is Coulomb’s constant. Coulomb’s
constant can be written in terms of a fundamental constant of the universe, the
permittivity of free space ϵ0 ≡ 1

4πk = 8.854× 10−12 N−1m−2C2.

10This is an experimentally proven theory (for the electrostatic regime). We will soon
replace it with Maxwell’s equations, a more complete theory.
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We can calculate the force due to a collection of N charges {qi} on a charge q
with the sum of all the forces on q. Namely,

F = kq

N∑
i=1

qi
r2i

r̂i (48)

2.2 Electric Potential Energy

Since we defined a force, we can also define a potential energy. The potential
energy of a system of charges U is obtained by simply finding the work it takes
to bring each of the charges sequentially in from infinity (against the Coulomb
force field produced by the other charges). Recall that the work required to
move against11 a force F from A to B is defined as

W ≡ −
ˆ B

A

F · ds (49)

This allows us to find that the potential energy stored in a system of static
charges {qi} is

U = k

N∑
i=1

N∑
j=1
j>i

qiqj
rij

r̂ij (50)

2.3 Electric Field

Going back to equation 48, you might notice that the the charge q was taken
outside of the sum. In fact, with that, the complicated sum of many vectors is
described only in terms of the other charges, evaluated at the position of charge
q. This means that we can treat it as a vector field that is generated by the
sources, and we simply need to evaluate it wherever we would like to place a
”test” charge q. We call this object the electric field E. In electrostatics, it is

E(x, y, z) = k

N∑
i=1

qi
r2i

r̂i (51)

where r ≡ rir̂i is the displacement from the charge qi to the charge q. So, the
force on a charge is proportional to the electric field F ≡ qE. The electric field
permeates all of space, encoding all the information of the sources in it. This
allows us to therefore easily consider how small “test charges” move through
space using the electric field using F = mẍ. We can therefore visualize an elec-
tric field as a vector field that contains some scaled version of the acceleration

11To make it the work done by the force, just remove the minus sign.
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that a small test charge would experience at any given location. The electric
field of a single positive source charge centered at the origin looks like12
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This can be interpreted as there being a repulsive force to all positive test charges
(if it was a negative test charge it would be attractive because of the sign of
F ≡ qE). If you were to then put a positive charge near the origin, it would
experience a large force repelling it. This would cause it to increase in velocity
and then ultimately move further from the origin (from F = mẍ). However,
after it moves away, it will experience a smaller force then it previously, causing
it to accelerate less fast. This is due to the inverse-square scaling of the force. If
the test charge was negative, then the source would act similar to gravity (note
the similarities between equation 47 and Newton’s law of gravity).

Now imagine that there is a positive and a negative source charge positioned
some distance from each other. The electric field will then look like
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This means that any positive test charge near the positive source charge will
eventually find its way to the negative source charge. These electric field plots

12Note that I have actually smoothed the distribution a little bit to make it look nice. This
just means that near the center, the vector magnitudes should be larger, so much so that they
would lie off of the plot.
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are fun to make13. The following is a plot of the electric field corresponding to
four positive source charges around a negative source charge. Note that this can
effectively prevent a test charge outside of the system from entering it naturally
(without putting some work in from another force).
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2.4 Charge Distributions

Imagine we have many (like ∼ 1023) charges. It will be difficult to use equation
51 as it stands, since we will have a very large sum. Instead, we will take the
continuum limit of the series, turning it into an integral. Specifically, we can
consider a vector field quantity that describes the charge density ρ(x, y, z) at
any given point along the charge distribution. Then, to obtain the total electric
field of all components of the field, we simply integrate over the whole volume.
Namely, equation 51 is replaced with

E(x, y, z) = k

˚
ρ(x′, y′, z′)

r2
r̂ dx′dy′dz′ (52)

where r ≡ r r̂ points from the location on the charge distribution (x′, y′, z′)
to the general electric field location (x, y, z). In other words, if r′ is the
displacement from the origin to a point on the source and r is the location of a
point of the field, then r ≡ r − r′. Note that by convention, we usually write
ρ(r) to mean the charge density of a volume charge distribution. If it is a surface
charge distribution, we use σ(r) and integrate over the surface instead, and if it
is a line charge, then we use λ(r) and integrate over the line. Thus, in principle
we could find now the electric field of any charge distribution.

2.5 Flux

In physics, flux simply means the amount of something going through an given
area over a given time. Imagine you have some uniform light source flowing in

13You can make them yourself too with code if you want!
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some direction v, and you place a light-collecting plane with normal n perpen-
dicular to the incoming light. It will have a corresponding area-scaled normal
of a ≡ an, where a is the the area of the plane. It will look like

a

All of the light will be intercepted, so the number of photons that flow through
this given area in a given time will be Φ = |v||a|. We call this quantity the
flux of v through the surface a and it is the rate of flow of photons through
the surface. Now consider tilting the plane so that it is perfectly parallel to the
light flow.

a

Then, there will be no flow of photons through a (they all go around it), so the
flux is Φ = 0. In fact, if you consider a plane tilted at some angle θ with respect
to the flow v, then the portion of the plane that is perpendicular to the flow is
a cos θ. Thus, the flux is Φ = |v||a| cos θ = v · a. We can construct this for any
surface by simply integrating over the surface (treating each infinitesimal area
piece as a plane), to get that the general flux of v(x, y, z) through the surface
S is

Φ =

¨
S

v · da (53)

This can be applied to the electric field to get the electric flux through a surface
S. Namely,

ΦE =

¨
S

E · da (54)

This quantity roughly measures the number of electric field lines that pass
through S.
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2.6 Gauss’s Law

Now we have all of the formalism needed to understand how to use Gauss’s law
(one of the Maxwell equations). Gauss’s law relates the flux of the electric field
through a closed surface to the enclosed charge. It is

‹
S

E · da =
1

ϵ0
Qenc (55)

It gives a way to find the source charges Qenc enclosed in the closed surface
S from the electric field E.14 This is the integral form, but you can take the
derivative and get its vector form also. Since Qenc =

´
ρ(r′)dV ′ (where you

integrate over the volume of the enclosed surface15), then using the Divergence
Theorem (Gauss’s) gives

∇ ·E =
1

ϵ0
ρ (56)

Actually applying Gauss’s law, is not immediately evident. Usually we have the
enclosed charge or charge distribution and we want to find the corresponding
electric field (the other way around is straight forward). The way to do this
is using ”Gauss surfaces”, surfaces that preserve some symmetry of the system
which the electric field should be perpendicular to. In spherical symmetry, use a
concentric sphere. In cylindrical symmetry, use a coaxial cylinder and in plane
symmetry, use a prism. When there is a symmetry, you know that E will be
parallel to the normal of the surface, so E · da = |E|da. Since the magnitude of
|E| is constant along the surface, the flux through a Gaussian surface is simply
ΦE,Gaussian surface = |E|A. We will see some examples of this in action.

2.7 Example: Electric Field of Uniform Spherical Charge

Suppose we have a uniform spherical charge density ρ, with radius R. Outside
of the sphere, what is the electric? We expect it to be described by Coulomb’s
law. To solve this, choose a Gaussian surface outside of the sphere at a radius
r > R. Then, the enclosed charge is the full charge q ≡

´
ρdτ , so we can use

Gauss’s Law in the form

|E|A = |E|4πr2 =
q

ϵ0
=⇒ |E| = k

q

r2

Since the Gaussian surface normal points in the same direction as E (radially),
then E = k q

r2 r̂, which is indeed Coulumb’s law.

14Note that often people drop the multiple integral signs, since it is understood that we are
integrating over a surface from the differential element. However, it is not as common to drop
the closed symbol (the circle through the integral symbol), since it carries extra (important)
meaning.

15I.e. S = ∂V .
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What about inside the sphere? If the charge is uniformly distributed inside the
sphere, then the amount of charge in a spherical Gaussian surface with radius
r < R is Qenc =

´
GS

ρdτ = q(4πr3/3)/(4πR3/3) = q(r/R)3. So, inside the
sphere, the electric field is E = k qr

R3 r̂. Thus, the electric field grows as you
travel outwards from the center of the sphere.

2.8 Example: Electric Field of Coaxial Cable

This is problem 2.16 from Griffiths (2017). Consider a long coaxial cable (cylin-
der) with a uniform volume charge density ρ and radius a and an outer cylin-
drical shell of radius b > a with uniform surface charge density σ. The inner
(filled) cylinder has total charge Q > 0 and the outer cylinder has total charge
−Q < 0. Find the electric field in the regions s < a (inside the inner cylinder),
a < s < b (in between the cylinders) and s > b (outside the cylinders).

We start by noticing that we have cylindrical symmetry16, so we can choose a
cylindrical Gaussian surface with radius s and height h. Inside this Gaussian
surface (when s < a), the enclosed charge is Qenc = ρ(πs2h) since the density
is uniform. We therefore have, by Gauss’ law

|E|A = |E|2πsh =
q

ϵ0
ρπs2h =⇒ |E| = ρs

2ϵ0

So, the electric charge inside the cylinder (r < a) is E = ρs
2ϵ0

ŝ. In between
the cylinders, the enclosed charge is simply the charge of the inner cylinder
Q ≡ πρR2h. So, in between the cylinders (a < r < b), the electric field is

E = ρa2

2ϵ0s
ŝ. Finally, outside of the cylinder (r > b), there is no enclosed charge

since the charges of the two cylinders cancel, and you get that E = 0.

If we plot the electric field magnitude as a function of the radial component s
(for arbitrary a = 1, b = 3, ρ = 1, ϵ0 = 1), we get

Radial component s

Electric field magnitude |E|

a b

16It is a long cylinder, so there are no edge effects.
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It appears that the electric field is continuous across the boundaries of the inner
cylinder, but not the outer cylinder.

2.9 Electric Potential

In electrostatics, you might notice that ∇ × E = 0 always17. This means
that the E field can be expressed as the gradient of some function −V (E ≡
−∇V )18. This definition of the electric potential is equivalent (through the
gradient theorem) to

V (r) ≡ −
ˆ r

O

E · dl (57)

where O is some predefined origin point that determines the gauge (you can
always arbitrarily add a scalar to the potential). Typically, we try to make
this reference point lie at infinity, but this only works if there is a vanishing
electric field at infinity19. Just like the electric field, the potential obeys the
superposition principle (namely, Etot =

∑
i Ei and Vtot =

∑
i Vi). We can get

a general form for V in electrostatics through Coulumb’s law to be

V (r) ≡ 1

4πϵ0

˚
ρ(r′)

r dτ ′ (58)

This looks similar to equation 52 for the electric field, except now it is a scalar
field, so the annoying vectors are gone, making the calculation much easier. To
apply this formula, you simply have to find a formula for the distance from any
point on the charge distribution to any point in R3 (namely, r) and integrate.
Then, to find the electric field, we simply take the negative gradient.

The potential V is useful, because it is easy to get the electric field once we have
it. We need, therefore, a formula that we can use to find V . Using Gauss’ law,
we can derive an equation for the potential

∇2V = − ρ

ϵ0
(59)

This is called Poisson’s equation. In regions without charge, it reduces to
Laplace’s equation ∇2V = 0. To solve the general equation 59 we can use
separation of variables (see example 3.5 of Griffiths (2017)). There is also the
method of images (see section 3.2.1 of Griffiths (2017)). At large distances we
can use also use a multipole expansion (see example 3.10 of Griffiths (2017)).

17This arises from another one of the Maxwell equations ∇ × E = − ∂B
∂t

. But in the
electrostatic regime, there are no changing magnetic fields.

18Note that the negative sign is just a convention, but we could have defined it to be ∇V .
19This therefore does not work for an infinite plane.
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2.10 Example: Potential of Uniform Spherical Charge

If we have a spherical charge centered at the origin and radius R with charge
density ρ ( =⇒ Q = 4

3πR
3ρ), then we can use equation 58 with ρ(r′) = ρ,

r = r and dτ ′ = r′2 sin θ′dr′dθ′dϕ′, giving that

V (r) =
Q

4πϵ0r

just like a point source, as expected.

2.11 Example: Potential of Coaxial Cable

Since we have already calculated the electric field (in section 2.8), we can use
equation 57, integrating inwards from infinity (where V (s → ∞) = 0)20. Out-
side of the cable, E = 0, so the potential is constant. Thus, V (s ≥ b) = 0.

In between the two cylinders, we found that E(a < s < b) = ρa2

2ϵ0s
ŝ. We can

therefore take dl = −ds ŝ, so

V (a < s < b) = −
ˆ r

∞
E · dl =

ˆ b

s

ρa2

2ϵ0s
ds =

ρa2

2ϵ0
ln

(s
b

)
Since Q = ρπa2l, where l is the length of the cylinder, then V (a < s <
b) = Q

2πϵ0l
ln
(
s
b

)
. So, the potential difference between the cylinders is ∆V =

Q
2πϵ0l

ln
(
a
b

)
.

20Note that you have to be careful doing this when there is a non-zero charge distribution
at infinity. However, here we can avoid these issues since we are taking the spherical radius
s → ∞ (where the charge distribution does go to infinity) instead of the spherical radius
r → ∞ (which diverges here since the cylinder is infinite).
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