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1 The Language of Special Relativity

1.1 Lorentz Transformations

1.1.1 System of Equations Representation

We have seen so far that our intuition drastically fails us often when solving
problems in special relativity. This arises from the fact that there may be
multiple different compounding relativistic effects (i.e. time dilation, length
contraction, light travel time, etc.) that occur due to a change in inertial frame,
making dealing with complex systems difficult. It would be convenient to have
a simple transformation to apply when changing frames, packaging all of the
effects of SR into one structure and abstracting away its postulates so we do
not have to rely on our faulty intuition. These are Lorentz transformations.

In classical mechanics, we implicitly use the Galilean transformation without
even knowing it. Namely, for a transformation from a frame O to another frame
O’, moving at a speed v relative to O in the x-direction, we intuitively think of

t′ = t

x′ = x− vt

y′ = y

z′ = z

(1)

In other words, we simply add the distance between the two observers at any
given time (at constant velocity this is vt, of course) to get the transformed
frame. From what we have seen already, this cannot be true (at high speeds
at least) since nothing can move faster than the speed of light, where as there
is nothing in the equations stopping us from letting v > c. We also know that
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there should be a difference in the magnitude of time and space from time dila-
tion and length contraction.

The correct way to transform between frames is with the Lorentz transforma-
tion: 

t′ = γ(t− vx
c2 )

x′ = γ(x− vt)

y′ = y

z′ = z

(2)

where γ ≡ 1√
1−(v/c)2

is the Lorentz factor1. This transformation is a direct

consequence of the postulates of special relativity. For a derivation, see §8.1 of
Helliwell (2010), §3 (pp. 76-80) of French (1968), §2.3 of Faraoni (2013), §12.1.3
of Griffiths (2017), §1.9 of Schutz (2023), §11.3A of Jackson (1998), or many
others.

Something important to note is that the inverse of the Lorentz transformation
is simply the Lorentz transformation with the substitution v → −v. Namely,

t = γ(t′ + vx′

c2 )

x = γ(x′ + vt′)

y = y′

z = z′

(3)

This is, of course, required by the principle of reciprocity.

The Lorentz transformation equations (2 or 3) might seem strange at first, but
it is really just a packaging of all the concepts we have seen so far. If you let
x = 0, then the time transformation equation becomes the familiar time dilation
equation with proper time t and the second is simply how the position of the
frame O would move relative to the frame O’ (namely, x′ = −vt′). Similarly, if
you let t′ = 0, then the spatial transformation becomes length contraction with
proper length x, and the time equation becomes the relativity of simultaneity
equation (namely, t = (v/c2)x). You can also show that, upon setting t = 0
and (separately) x′ = 0, you can obtain the same phenomena with respect to a
proper time and length in the primed frame.

The equations 2 and 3, as written, simply performs a “Lorentz boost” (i.e.
transformation) to another frame that is oriented to have the same origin (in
time and space) and spatial rotation. You would have to also make such trans-
formations if it is relevant to the problem you are solving. Note also that the
equations become much more symmetrical if you chose units such that c = 1,

1Note that this “triple equals” sign typically denotes definitions in physics.
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or if you consider the equation written in terms of ct, ct′ and β ≡ v
c .

1.1.2 Tensor Representation

We can package the Lorentz transformation into a 4 by 4 matrix transformation
as follows. 

ct′

x′

y′

z′

 ≡


γ − v

cγ 0 0
−v

cγ γ 0 0
0 0 1 0
0 0 0 1



ct
x
y
z

 (4)

Sometimes it is convenient to give this matrix a symbol. Typically, this is given
with

Λµ′

ν =


γ −v

cγ 0 0
−v

cγ γ 0 0
0 0 1 0
0 0 0 1

 (5)

where µ and ν are simply indices that reference elements of the matrix (e.g.
Λx′

t ≡ Λ1
0 = − v

cγ). Then, we could package the (ct′, x′, y′, z′) vector into the

notation xµ′
and similarly for xν . This is a 4-vector (named so since it has four

components, 3 space and 1 time). Then, we could compactly write

xµ′
=

4∑
ν=0

Λµ′

νx
ν (6)

Four-vectors have unique properties that make them useful for special relativity
(and even more so for general relativity).2 We will explore these in the section
1.2.4.

1.2 Spacetime & Four-Vectors

1.2.1 Minkowski Spacetime

Classically, we treat time t independently from space x⃗. In special relativity,
however, it is useful to instead treat space and time together in what is called
spacetime. In classical mechanics, we use a 3-component vector x⃗ to represent
space and a scalar t value to represent time. Since we mix space and time
together in relativity (evidenced by the Lorentz transformation), spacetime is

2We could compactify it even more with Einstein summation convention. With it, we
simply adopt the convention that repeated indices on one side of an equation are summed

over. Thus, equation 6 becomes the quicker to write xµ′
= Λµ′

νx
ν .
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described with 4-vectors3 such as xµ′
.

You are no doubt familiar with the Pythagorean theorem, where c2 = a2 +
b2. This effectively calculates the distance between two points where a is the
difference in position in some direction (call it the x direction), and b is the
difference in the y direction. This is derived directly from Euclidean geometry
and assumes the fifth postulate4. We can generalize this to 3 spatial dimensions
giving

(∆s)2 = (∆x)2 + (∆y)2 + (∆z)2 (7)

This is called the “Euclidean line element”, “Euclidean metric” or “Euclidean
invariant interval”. It is called invariant because, classically, it does not change
when translating or rotating space (about x, y or z). It is the definition of
length in Euclidean space.

In SR, we know this Euclidean distance is no longer constant. It changes upon
Lorentz transformations5 We are therefore looking for something that is invari-
ant under Lorentz transformations too. This will necessarily depend on time,
since the Lorentz transformations do. It turns out with some reasoning 6 you can
find that the quantity that stays invariant under spacetime translations (about
t, x, y or z), spatial rotations (about x, y or z) or Lorentz transformations
(about t, x, y or z)7 is

(∆s)2 = −(c∆t)2 + (∆x)2 + (∆y)2 + (∆z)2 (8)

This is the Minkowski metric. We call ∆l ≡ ∆s the proper length (since
if ∆t = 0, we regain the Euclidean metric, which is a distance). We call
∆τ ≡ −∆s/c2 the proper time. You can show that these hold consistent with
the definitions we had earlier.

While in the Euclidean metric, ∆s = 0 =⇒ ∆x = ∆y = ∆z and ∆s ≥ 0, these
are not true for the Minkowski metric. Now, ∆s can be negative. This gives us
an important delineation between so-called “space-like” intervals (whose ∆l > 0
and ∆τ < 0), “time-like” intervals (whose ∆l < 0 and ∆τ > 0) and “light-like”
or “null” intervals (whose ∆l = ∆τ = 0). Time-like intervals describe time
differences, velocities, etc. and space-like intervals describe space differences,
accelerations, etc. Null intervals describe the trajectory of anything that moves
at the speed of light. Any time-like, space-like or null 4-vector will stay so under
the transformations that leave ∆s invariant.

3Or, more generally, tensors.
4Namely, the one stating that parallel lines never intersect or diverge away.
5It is a good exercise to check that the Euclidean line element is invariant under translations

or rotations of space, but not Lorentz transformations.
6See e.g. §9.2 of Helliwell (2010) for details.
7It’s also a good exercise to check this!
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We can construct a spacetime diagram, where ct is on the y-axis and x is on
the x-axis8. Then, you can create lines that propagate outwards at 45◦ angles
from the ct-x axes (ie. x = ±ct) representing the trajectories of light emitted
in all directions. This is called the “light-cone”, anything inside of which will
be causally connected to the O observer (at the origin) and anything outside of
which will be causally disconnected to the O observer. This is because if you
cross the light-cone (at an angle larger than 45◦ from the ct-axis) it will have to
travel at a speed greater than the speed of light for the observer O to reach the
event in time. Time-like intervals originating at the origin will be within the
light-cone, space-like intervals will lie outside the light-cone, and null intervals
will lie on the light-cone.

1.2.2 Aside: Imaginary Time & Symmetry

Something interesting to note is that the Minkowski metric becomes a 4D Eu-
clidean metric under the complex number transformation t → it ∈ C. What
effect does this have? Well, it should change the form of the transformation
that it is invariant under. The Euclidean metric is invariant under translations
and rotations about all of its coordinates. The translations are, of course, un-
changed and trivially satisfied for both the original Lorentz transformation and
the t → it Lorentz transformation. The rotations, however, are more interesting.
A 4D Euclidean metric should have

(
4
2

)
= 6 rotations since it needs to rotate two

of its four dimensions, compared to the
(
3
2

)
= 3 rotations in the 3D Euclidean

metric. Thus, we expect the analogous t → it Lorentz transformation to have 6
rotations also, in addition to the 4 translations (for a total of 10). The regular
Minkowski metric is left invariant under 4 translations, 3 spatial rotations and
3 Lorentz boosts. Thus, the Lorentz boosts must act like rotations under t → it.

To get a better view of this, we will define the rapidity ϕ ∈ R such that tanhϕ ≡
v
c , then you can manipulate equation 5 to get

Λµ′

ν =


coshϕ − sinhϕ 0 0
− sinhϕ coshϕ 0 0

0 0 1 0
0 0 0 1

 (9)

This resembles closely to the equation for a rotation, but with hyperbolic si-
nusoidal functions instead of the regular ones (and some sign changes). This
makes sense since the equation for ∆s in Minkowski spacetime is hyperbolic,
instead of the Euclidean space, which is ellipsoidal. It turns out that you can
let θ = iϕ and do the t → it transformation, and making the Lorentz transfor-
mation exactly a rotation in the plane of imaginary time it and x.

8Or any other spatial direction you like. Optionally, you could have two spatial directions
for a 3D plot.
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The 4 translations, 3 spatial rotations and 3 Lorentz boosts form a symmetry
group called the Poincaré group for the invariant quantity ∆s. The Lorentz
boost symmetries form a subgroup of the Poincaré group called the Lorentz
group, which is related to SO(3), the symmetry group of rotations.

1.2.3 Aside: General Relativity

It may also be interesting to note that the metric represents the shape of the
spacetime. Specifically, the Minkowski metric is only valid in SR (or locally in
GR). It is not valid, for example, around a black hole and instead there is a
different metric. The metric for a spherically symmetric static black hole (the
so-called “Schwarzschild” black hole) is actually fairly simple:

ds2 = −
(
1− 2M

r

)
c2dt2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θdϕ2 (10)

where the discrete ∆s is replaced with the more generalized differential ds and
the equation is represented in spherical coordinates9. There are other types
of metrics that describe other kinds of black holes such as the Kerr black hole
which rotates, or the Reissner–Nordström black hole which is electromagneti-
cally charged. If you are more interested in this you may want to look into an
introductory general relativity book such as Schutz (2023).

1.2.4 Aside: Four-Vectors & Tensors

A 4-vector is not just a list of four numbers as you might expect. It is a bit
more special. It has the particular property of transforming in a particular way
under a change of coordinates. Namely, a 4-vector Aν under the coordinate
transformation xν → xµ′

transforms like

Aµ′
=

4∑
ν=0

∂xµ′

∂xν
Aν (11)

This is how a vector is defined. Any four-vector by this definition will necessar-
ily always transform in this way. This includes under Lorentz transformations
10. The key piece of information that is gained by knowing that a list of four
numbers transforms like a 4-vector (and thus is a four-vector by definition) is
that it . For example, since 4-velocity and 4-acceleration (constructions on top
of the usual 3-velocity and 3-acceleration) are four-vectors, when you boost to
another frame, you know that they should transform in a predictable way: As

in equation 11 with transformation matrix ∂xµ′

∂xν = Λµ′

ν . If you instead transform
from Cartesian coordinates to polar coordinates, you could also transform any

9You might recognize some of the terms already!
10You can check this manually if you want.
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4-vector with the same transformation using the respective coordinate transfor-

mation matrix defined by ∂xµ′

∂xν where µ and ν are indices of the matrix (note
that, under that view, equation 11 is just a matrix multiplication). There are ex-
amples of objects that have four elements, but are not 4-vectors because they do
not have this sort of “coupling” with the position transformation. For example,
four constants (i.e. 0, 1, π, etc.) do not transform at all and so are not 4-vectors.

The mathematical generalization of 4-vectors are tensors. In particular, 4-
vectors are a form of “rank 1” tensors. Rank 0 tensors are simply scalars.
Scalars are defined to be invariant of . For example π is a scalar and the trace
of a rank 2 tensor is a scalar. Rank 2 tensors are effectively matrices, as you
know them, but with another transformation restriction. A rank 2 (fully con-
travariant) tensor Tµν transforms as

Tµ′ν′
=
∑
µ,ν

∂xµ′

∂xµ

∂xν′

∂xν
Tµν (12)

You can see how these tensors can be generalized to an arbitrary amount of
dimensions. There are also covariant (or dual) vectors and rank 2 tensors,
denoted with lower indices. A covariant vector Aν is defined as transforming
like

Aµ′ =
∑
ν

∂xν

∂xµ′ Aν (13)

And similarly for a general rank N (fully covariant) tensor. Note that this
definition of dual 4-vectors, makes that the summed multiplication of a vector
with its corresponding dual vector is a scalar:

∑
µ′

Aµ′
Aµ′ =

∑
µ′

(∑
ν

∂xν

∂xµ′ Aν

)(∑
ν

∂xµ′

∂xν
Aν

)
=
∑
ν

AνAν

While 4-vectors can be thought of as arrows pointing in spacetime in a given
direction, dual 4-vectors (also called one-forms) can be thought of as contours in
a given direction, denoting the definition of distance. This should ring some bells
in your head. The notion of distance is found from the line element equation (in
SR, the Minkowski spacetime). So there must be some object that carries the
notion of distance from our chosen spacetime metric. This is the metric tensor
gµν . The metric tensor is defined from the line element as

ds2 =
∑
µν

gµνx
µxν (14)
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In Minkowski spacetime metric is typically denoted with ηµν and is found from
equations 14 and 8 to be gµν = ηµν = ηµν ≡ diag(−1, 1, 1, 1) (i.e. the matrix
formed where the diagonal elements are -1, 1, 1, 1, and the non-diagonal ele-
ments are 0)11. Then, we can raise and lower the indices (convert between the
two vector types) with

Aµ =
∑
ν

gµνA
ν

Aν =
∑
µ

gµνAµ

and vice versa. Note that the metric tensor is always symmetric (i.e. gµν = gνµ)
and

∑
gµνg

µν = 4. We can define a dot-product between vectors uµ and wν ,
that converges to the regular dot product when using the Euclidean metric, as∑

µ,ν

uµwν =
∑
µ,ν

gµνu
µwν (15)

It turns out that defining the dot product in this way makes it a scalar. You can
also have mixed tensors Tµ

ν whose individual components transform like vectors
or one-forms accordingly.

Tµ′

ν′ =
∑
µ,ν

∂xµ′

∂xµ

∂xν

∂xν′ T
µ
ν (16)

These typically represent transformations matrices. You might have noticed
that this is similar notation to when I defined the Lorentz transformation Λµ′

ν

in equation 5. This is because the Lorentz transformation is a mixed rank 2
tensor12. Note that typically we do not include the sums in these tensor equa-
tions and implicitly as

If you want to understand 4-vectors and tensors further (and especially if you
intend to study general relativity), I would recommend reading Neuenschwander
(2015) for a concise text on tensor calculus for physics, or Faraoni (2013) for a
more SR text that dives deep into tensors and how they are used in relativity.
Please do note, however, that for Physics 1b you will only need to know 4-
vectors for practical uses (in relativistic mechanics) and you will not need to
know tensors at all.

11Here, I adopt what is called the -+++ signature. Typically, relativists use this signature.
There is also the +--- signature, often used by particle physicists, where the definition of the
metric is exactly negative what is shown in eq. 14 if you use the proper length as ds, or by
just simply using the proper time as ds instead.

12Note that it is common to write that it is a
(1
1

)
tensor, where the upper number indicates

the number of upper indices (or contravariant indices), and vice versa for the covariant indices.
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1.3 Example: Velocity Transformation

Now, equipped with a new system to study special relativity, we can somewhat
easily investigate how a 3-velocity transforms under a Lorentz boost.

1.3.1 Three-Vector Method

The standard way to do this is by using the Lorentz transformation as defined by
the system of equations (2). Consider a 3-velocity v⃗ ≡ (vx, vy, vz) ≡ (dxdt ,

dy
dt ,

dz
dt )

in frame O, which corresponds to the 3-velocity v⃗′ ≡ (v′x, v
′
y, v

′
z) ≡ (dx

′

dt′ ,
dy′

dt′ ,
dz′

dt′ )
in frame O’, which is moving with speed V in the x direction away from O. From
the Lorentz transformation, we know how to relate t’, x’, etc. to t, so we can
use the chain rule to get that

dx′

dt′
=

dx′

dt

dt

dt′

And similarly for y′ and z′. By equations (2), we know that dx′

dt = γ(dxdt − V ),
dt
dt′ = γ(1+(V/c2)dx

′

dt′ ) =⇒ dt′

dt = γ(1−(V/c2)dxdt ) by the principle of reciprocity.

Moreover, dy′

dt = dy
dt , and

dz′

dt = dz
dt . Thus, we obtain the equations of 3-velocity

transformation


v′x = vx−V

1−V vx/c2

v′y =
vy
√

1−(V/c)2

1−V vx/c2

v′z =
vz
√

1−(V/c)2

1−V vx/c2

(17)

We can notice that the 3-velocity changes even perpendicular to the velocity of
the frame (i.e. vy and vz). This change in magnitude comes from both time
dilation and the relativity of simultaneity (see Prof. Patterson’s note on veloc-
ity transforms for details). The velocity in the parallel direction to the frame
motion (vx) is further changed from the perpendicular directions due to length
contraction and the regular intuitive understanding of velocity addition.

We can also notice that, in the Newtonian limit, where v ≪ c, we obtain the
intuitive v′x = vx − V with vy and vz left unchanged.

1.3.2 Four-Vector Method

To show 4-vectors in use, we will derive this again with them. We will conve-
niently package our velocities v⃗ and v⃗′ into special 4-vectors called “4-velocities”.
In a rest frame, an object moves at zero 3-velocity, but not zero 4-velocity. This
is because it also moves in time. Therefore, an object observes its own 4-velocity
as uν

rest = (c, 0, 0, 0).13 This is a 4-vector, so we can boost it to the O frame by

13Or, the shorthand uν
rest = (c, 0⃗).
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multiplying it with the Lorentz transformation matrix. For now, we will only
consider a velocity in the x direction so that the matrix in equation 5 will hold,
and then we can rotate the frame to match a general velocity observed in O
afterwards. So, the transformed 4-velocity becomes

uµ = Λµ
νu

ν
rest

where there is an implicit summation over the value ν on the right-hand-side
from the Einstein summation convention. Actually doing this multiplication
with the matrix from equation 5 gives that uν = (γc,−γv, 0, 0). We can then
rotate the velocity spatially so that it matches with the observed v⃗ in frame O,
getting

uν = γ(c, v⃗) (18)

This is the general 4-velocity formula for an object moving at velocity v⃗ relative
to O. From symmetry, we expect the vz velocity addition to be equivalent to
the vy velocity addition. We will therefore only consider uν = γv⃗(c, vx, vy, 0),

where I distinguish γv⃗ =
(
1− (|v⃗|/c)2

)−1/2
from γV =

(
1− (V/c)2

)−1/2
. Then,

we simply transform the 4-velocity to become

uµ′
=
∑
ν

Λµ′

νu
ν = γv⃗ (γV c− γV (V vx/c), γV vx − γV V, vy, 0)

We already know from equation 20 that this should also be equal to uµ′
=

γv⃗′(1, v⃗′). So, we can solve for γv⃗′ by the equating the time component of the
4-vector. Namely,

γv⃗′ = γv⃗γV (1− V vx/c
2)

Comparing now the x and y components gives

v′y =
γv⃗γV (vx − V )

γv⃗γV (1− V vx/c2)

v′y =
γv⃗vy

γv⃗γV (1− V vx/c2)

Remembering that y → z will give the equation for v′z, we can plug in the γs
and obtain equation 17, as expected.

2 Relativistic Mechanics

2.1 Conservation of Momentum and Energy

Conservation of momentum and conservation of energy are two important con-
cepts in classical physics. In order to use them in SR, however, we require them
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to follow the two postulates. This means that if momentum is conserved in one
frame, it must be conserved in all frames (and likewise for energy). Let’s check
if the regular momentum and energy conservation equations are invariant of the
frame you are in.

Classically, 3-momentum p⃗ ≡ mv⃗ between two particles of mass mA and mB is

mAv⃗Ai +mB v⃗Bi = mAv⃗Af +mB v⃗Bf (19)

where i denotes the initial momentum and f denotes the final momentum. This
is invariant to the Galilean transformation (and hence is a valid conservation
equation classically). We know how velocities transform (equation 17), so we
can simply plug in the transformation into 19 and we find that both sides are
not equal anymore. Thus, conservation of 3-momentum is violated in SR. We
can notice that for a photon p = E/c, so energy conservation is also violated.

We must therefore look for make the conservation laws invariant of Lorentz
transformations. The way to do this is with our newfound tool of 4-vectors.

2.2 Four-Momentum

To formalize relativistic mechanics, let’s first start with the most basic element
4-position defined as xµ = (ct, x, y, z) = (ct, x⃗) for some point particle with mass
m. We can then define its 4-velocity as

uµ ≡ dxµ

dτ
(20)

where τ is the proper time of uµ in a given frame. This effectively means that
uµ is always tangent to the so-called “worldline” xµ, with a special parameter
τ . The worldline is the (sometimes not straight) line in some observer’s frame
that views a particle with trajectory xµ in spacetime. Thus, uµ acts as we might
expect a velocity to.

In the rest frame of the particle, the proper time is the observer time (τ = t), so
we get = uµ =̇ (c, 0⃗).14 This is exactly what we defined in section 1.3.2. Thus,
in some general frame O, a 3-velocity v⃗ will have an equivalent 4-velocity

uµ = γ(c, v⃗) (21)

where γ ≡ 1√
1−(|v⃗|/c)2

. Now we have a way to transform velocities with an

arbitrary amount of Lorentz transformations. Namely, we convert it from a

14Note that here I use the special notation =̇ to denote “equal in some frame”, distinct from
= which denotes “equal in all frames”.
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3-velocity to at 4-velocity, Lorentz transform and then convert back to a 3-
velocity. Note that at any point, we can just take the spacial components of a
4-vector by using Latin indices instead of Greek ones. For example, with the
4-velocity

ui = γvi (22)

It is sometimes useful to know that the dot product uνuν ≡ −(ut)2 + (ux)2 +
(uy)2 + (uz)2 = −c2 and thus is a scalar15. We could also define the 4-
acceleration in a similar way, such that

aµ ≡ duµ

dτ
=

d2xµ

dτ2
(23)

A useful property to know is that the dot product between the 4-velocity and
4-acceleration can be shown to be uνaν = 0.16

Now, we define the 4-momentum as you might expect

pµ ≡ muµ (24)

Since it is a 4-vector, it transforms like one, and so any linear combination of
pµs will also follow the same transformation. Thus, four momentum is con-
served.

This is all rather abstract though, so let’s turn the momentum equation into its
3-vector counterpart. Namely, take the spatial components of the 4-momentum

pi = mui = γmvi

=⇒ p⃗ = γmv⃗ (25)

Thus, the relativistic 3-momentum is a Lorentz factor away from the classical
3-momentum. Notice that in the Newtonian limit as γ → 1, we recover the clas-
sical 3-momentum mv⃗. Thus, the momentum that is conserved is really γmv⃗
not mv⃗.

You might have noticed that we have not looked at the time component of the
4-momentum yet. It should be conserved too. So, what conservation law does
it hold information about? Let’s find out. The time component is

15Note this dot product definition is only valid in special relativity (i.e. Minkowski space-
time). See section 1.2.4 for the general definition.

16We call them “orthogonal vectors”. This effectively means that if uν is space-like (it is for
massive particles from equation 21), then aν is necessarily space-like and vice versa. Similarly,
uν is null if and only if aν is null.
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pt = mut = γmc

=⇒ pt ≡ E

c
(26)

In fact, this is energy E conservation. So, we can conclude that

E = γmc2 (27)

is the relativistic energy. When rewritten in terms of the magnitude of the
relativistic 3-momentum and the mass

E =
√

p2c2 +m2c4 (28)

This is a scalar equation and thus is true in any frame. Or, in the rest frame
(the so-called rest energy), we obtain the famous

E =̇ mc2 (29)

This is why we call m the rest mass of the particle. This means that there is
an equivalence between mass and energy. With this equation, you can predict
the amount of energy released in nuclear reactions (which transfer mass into
energy or vice versa). Note that it is sometimes convenient to package energy
and momentum together as

pµ = γm (c, v⃗) (30)

which we can use to transform easily between frames.

2.3 Aside: Four-Force

While it is not possible to use gravity in special relativity (we need general
relativity for that), we can cheat our way around to include another force, such
as electrodynamics, into the mix. To do this, we define a relativistic 4-force fµ

as

fµ ≡ dpµ

dτ
(31)

For constant mass m, this is just fµ = maµ. We could find that its dot product
with velocity is just fµuµ = −ṁc2 where ṁ ≡ dm

dτ = 0 if the mass of the particle
is constant. The relativistic 3-force is defined from the relativistic 3-momentum
p⃗ as F⃗ ≡ dp⃗

dt .
17 So, to some observer,

17Note that this implicitly includes a Lorentz factor compared to the classical definition (i.e.
p⃗ = γmv⃗). Also note that this is defined with respect to an observer time t not the proper
time τ .
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fµ ≡
(
f t, f⃗

)
=

(
γ

c

dE

dt
, γF⃗

)
(32)

You can therefore find that the energy change due to the work by F⃗ against
the particle is dE

dt = F⃗ .v⃗. And that the spatial component of the relativistic
4-force (distinct from the relativistic 3-force due to the t vs. τ difference) is

f⃗ = γF⃗ = γ d
dt (γmv⃗). That is how you construct a 4-force relative to a par-

ticular frame in special relativity. You can then just transform the force to
any frame (or coordinate system) you like with the Lorentz transformation (or
other transformation) and decompose to get the regular non-relativistic 3-vector
quantities you are used to if you like.

From the 4-force, we can define relativistic kinetic energy by first defining work
in the usual way

W =

∫
|F⃗ |ds (33)

Using the work-energy theorem, we can eventually conclude that the relativistic
kinetic energy of a particle with mass m moving with speed v is T = (γ −
1)mc2. If we wanted, we could also define the relativistic angular momentum of
a particle as a pseudo-tensor lµν = xµpν−xνpµ ≡ 2x[µ]pν]. We could also define
particle systems as having total mass, momentum and angular momentum as the
sums of the four-vector/tensor analogues. We have then derived all of (massive
particle) mechanics in special relativity.

2.4 Example: Particle Decays

Suppose we have a single particle of mass M that decays into two particles of
mass m1 and m2. We want to find what the energy of the resulting particles are.

In the rest frame of the single particle, by conservation of energy

E = E1 + E2 = Mc2

since γ = 1. And, by conservation of momentum,

0⃗ = p⃗ = p⃗1 + p⃗2

=⇒ p1 = p2

Using equation 28 for particle 1 gives

E2
2 = p22c

2 +m2
2c

4
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=⇒ (Mc2 − E1)
2 = p21c

2 +m2
2c

4

=⇒ M2c4 − 2Mc2E1 + E2
1 = (p1)

2c2 +m2
2c

4

=⇒ M2c2 − 2ME1 +m2
1c

2 = m2
2c

2

=⇒ E1 =

(
M2 +m2

1 −m2
2

2M

)
c2

Thus, the energy of the resulting particle 1 will be E1 as above. By symmetry,
there will be a similar equation for E2 with (m1,m2) → (m2,m1).

2.5 Relativistic Optics

So far we have only considered massive particles. However, photons (and many
other particles) are massless. We cannot even define a proper time since, along
a null trajectory, ∆s = 0 =⇒ ∆τ = 0. Since you cannot Lorentz boost to a
photon trajectory (vectors that are null in one frame must be null in all other
frames), we can only define a photon trajectory from the perspective of some
other frame. We therefore define it according to some parameterization λ. So,
for a null trajectory

uµ ≡ dxµ

dλ
(34)

Necessarily, its magnitude is uµuµ = 0. In Minkowski spacetime, light rays
cannot accelerate and follow straight lines, so we can always choose a parameter
λ such that duµ

dλ = 0.18 This means that it can be written in terms of a 3-velocity
u⃗ as

uµ = (|u⃗|, u⃗) (35)

We cannot now follow the usual 4-momentum equation (24). Instead we define
It is sometimes useful to write a 4-vector that contains information about the
frequency and wave number of the light. We define the wave 4-vector as

kµ ≡ ω

c
uµ (36)

where ω is the angular frequency of the wave. For null trajectories, specifically,
we have

kµ =
(ω
c
, k⃗
)

(37)

18Such a paramter is called “affine”.
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where k⃗ is the usual wave number. If we match with the usual definition of
photon 3-momentum p⃗ = ℏk⃗, then we can define the photon 4-momentum as

pµ ≡ ℏkµ =

(
ℏω
c
, ℏk⃗
)

=

(
E

c
, p⃗

)
(38)

We can then recover the energy equation for photons using the normalization
pνp

ν = 0 to get, effectively, equation 28 with m = 0). Namely,

E = pc (39)

There are lots of strange effects in relativistic optics such as a relativistic Doppler
effect (where light changes frequency based on the relative speed of the observer
from the source), relativistic beaming (where light is much brighter and centrally
concentrated due to its motion), and how extended objects will appear to morph
in shape depending on certain conditions. If you are interested, see §13.2 of
Helliwell (2010) or §7 of Faraoni (2013).

2.6 Example: Compton Scattering

Suppose a photon at an initial wavelength λ collides with an electron of mass
me. The photon will scatter at an angle θ relative to its original trajectory and
the electron will scatter at some other angle -ϕ. We want to find out what the
resulting photon wavelength λ′ will be.

Using relativistic 4-momentum conservation along the t, x and y axis, we can
find the energy and momentum of the electron. Doing this gives

E +mec
2 = E′ + Ee

p = p′ cos θ + pe cosϕ

0 = p′ sin θ + pe sinϕ

We can solve the third equation for ϕ and substitute it back into the second
equation to get {

Ee = E − E′ +mec
2

p2e = p2 + p′2 − 2pp′ cos θ

We can combine energy and momentum with E2
e = p2ec

2 +m2
ec

4, giving(
E − E′ +mec

2
)2

=
(
p2 + p′2 − 2pp′ cos θ

)
c2 +m2

ec
4
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We can relate the momentum and energy of a photon to its wavelength with
E = hν = hc/λ, p = hν/c = h/λ, E′ = hν′ = hc/λ′, and p′ = hν′/c = h/λ′.
Then, solving for λ′ gives the Compton scattering equation:

λ′ = λ+
h

mec
(1− cos θ) (40)

Thus, Compton scattering reddens the wavelength of light. Compton scattering
is very important in astronomy. The related inverse electron scattering, where
an electron scatters off of a photon, increases the frequency of light instead
of decreasing it (hence the name). Around supermassive black holes (in the
centers of galaxies), there is an accretion disk of material that emits a thermal
spectrum (you can even now see a picture of such light around the black hole in
the center of our galaxy, Sag A*). There is highly ionized matter that obscures
this accretion disk, called the corona. The electrons from the corona scatter
cause the thermal photons from the disk to extremely high energies that we can
detect with X-ray telescopes.

2.7 Example: Energy-Momentum In Another Frame

Problem (Helliwell (2010) problem 13.1): We observe an electron of mass 0.511
MeV/c2 moving in the +x direction at speed v = (3/5)c. Find its momentum
and energy in our frame, and also in a frame moving in the +x direction at
speed v = (4/5)c.

Here, we will make good use of 4-vectors. We have that the rest mass of a
particle when moving at v = (3/5)c to the right is m = 0.511 MeV/c2. The
velocity relative to our frame is v⃗ = ((3/5)c, 0, 0). We can therefore construct
the 4-momentum from equation 30 as

pµ = γm(c, v⃗)

=
0.511 MeV/c2√

1− (3/5)2
(c, (3/5)c, 0, 0)

= (0.6388 MeV/c, 0.3833 MeV/c, 0, 0)

Thus, relative to us, the electron has an energy of E = 0.639 MeV and a
momentum of p = 0.383 MeV/c. To find it in a frame moving at v = (4/5)x in
the x direction (call it the O’ frame), we can Lorentz transform it with equation
5 to get

pµ
′
=

4∑
ν=0

Λµ′

νp
′µ

=
1 MeV/c√
1− (4/5)2

(0.6388− (4/5) ∗ 0.3833, 0.3833− (4/5) ∗ 0.6388, 0, 0)
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= (−0.214 MeV/c, 0.554 MeV/c, 0, 0)

Thus, relative to the O’ frame, the electron has an energy of E′ = 0.554 MeV
and a momentum of p′ = −0.214 MeV/c.
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