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1 Introduction to Special Relativity

1.1 Einstein’s Postulates

There are two fundamental postulates that give rise to special relativity. They
are

1. The laws of physics are the same in all inertial reference frames.1

2. Light propagates through empty space with a definite speed c, independent
of the speed of the observer.2

These postulates lead directly to a few interesting phenomena:

1. Time dilation

2. Length contraction

3. Relativity of simultaneity

These will eventually be combined using Lorentz transformations. For now
though, we will start with understanding time dilation.

1Inertial reference frames are defined as frames which are moving at constant velocity with
respect to another inertial frame. You can tell that you are in a non-inertial frame by observing
a failure in Newton’s First Law (objects that are in motion stay in motion in a straight line,
unless acted on by a force). Note that this is more of a definition than a physical law. In fact,
it is not true in general when you consider curved spacetime geodesics (ie. general relativity).

2Note that the second postulate is really somewhat redundant since it follows from the
first postulate combined with Maxwell’s equations (which describe electromagnetism). More
generally, if you have a physical law that describes a speed of light c in a given inertial frame,
then it must also be constant for all inertial frames by the first postulate. For historical
and pedagogical reasons however, it is still considered a postulate of special relativity. In
reality, there are other fundamental assumptions hidden in SR such as spatial homogeneity
and isotropy.
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1.2 Time Dilation

Consider a box of sidelength a moving with constant velocity v in the +x direc-
tion, relative to the ground. Both the box and the ground are therefore inertial
frames: According to the ground, the box moves at speed v in the +x direction
and according to the box, the ground moves at a speed v in the -x direction.
Denote the frame of the ground with primes and the frame of the box without
primes.

Now, imagine we emit a light beam directly upwards (+y direction) in the box.
Thus, the total distance the light travels in the box frame is a. According to
the ground though, this light beam leans to one side by an amount v∆t′ (where
∆t′ is the time it takes for the light to reach the top of the box, in the ground
frame), due to the motion of the box relative to the ground. Thus, the total
distance the light travels in the ground frame is

√
a2 + (v∆t′)2. By postulate 2,

the speed of light is the same in both frames (c = c′), so
√
a2 + (v∆t′)2 = c∆t′

and a = c∆t (where ∆t is the time it takes for the light to reach the top of the
box, in the box frame). Then, it only takes a bit of algebra to show that

∆t′ =

 1√
1− v

c
2

∆t (1)

This is the equation for time dilation. We can better understand this if we

consider the Lorentz factor γ ≡
(

1√
1− v

c
2

)
and consider the limits. In the clas-

sical limit v
c ≪ 1, γ ≈ 1, so the two time differences are equal, as expected.

In the relativistic limit v → c, γ → ∞, so the time difference in the frame of
the ground grows very large.3 This effectively means that, under the postulates
that Einstein proposed, time is dilated when seen from a moving frame.

There are a few things we can notice about equation 1:

First, you need a very large v to create any significant effect on γ (and
thus the time dilation factor). Even if v = 0.5c, γ ≈ 1.15. This is good
for the everyday world (we can almost always forget about this), but bad
for designing experiments (at least in the early 1900s).

Second, there seems to be a sort of preferred frame for a given object4:
the frame in which the object is at rest. We call this the “proper frame”.
This causes the time to be minimal, and as we will see with length con-
traction, the length to be maximal.

3Note that this kind of approximation is very useful to
4Though, not preferred enough to break the first postulate.
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A final observation we might make is that it seems it may be convenient to
use what are called “relativistic units”. These are units where the value of
the speed of light is c = 1. This allows us to simply write γ =

(
1√

1−v2

)
,

and allows us to easily use units of distance such as “light-hours” or
“light-years”, etc.

1.3 Length Contraction

Similar to time dilation is length contraction. We can once again define a proper
frame for length (as will will soon see). Important differences are that length
contraction is maximal when in the proper frame, whereas time dilation is min-
imal when in the proper frame. We will briefly cover the regular derivation of
the length contraction formula.

Consider a rod of (proper) length l. Consider also a clock that moves at speed
v in the direction of the length of the rod, relative to the rod. Relative to
the rod, the clock will take a time t = l

v to get from one end of the rod to
the other. Due to time dilation, the clock (if set to t′ = 0 initially) will read
t′ = (l/v)

√
1− v2 after it reaches the end of the rod. In the clock’s frame, the

rod moves backwards at a speed v, so t′ = l′

v . Therefore, we get the length
contraction formula

l′ = l

√
1− v

c

2
(2)

We can once again use the Lorentz factor γ to reduce the equation down to
l = γl′. Again, l here is the proper length (ie. its maximal length possible, and
length when at rest).

A crucial point to stress is that length contraction only occurs along the direction
of motion. Therefore, if the rod were perpendicular to the motion, it would not
contract at all (assuming an infinitesimally thick rod). Interestingly, if you move
at relativistic speeds parallel to some component of a rod that has a component
in a perpendicular direction, then the rod will appear to change angle.

1.4 Relativity of Simultaneity

A concept that is often held dearly by our physical intuition is the concept of
simultaneity being true for all frames. Namely, if two events are simultaneous in
one frame, then they should be simultaneous to all frames. This is completely
false in the relativistic regime.
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Consider two stars (A and B) some astronomical distance from each other, both
at rest with each other. Let now, from the perspective of the center point of
the two stars, both stars go supernovae at the same time. Recall that, since c
is finite, light takes time to reach an observer. Thus, what is really happening
is that light is taking a finite time to reach the observer from both stars. If
we now displace the observer to be very close to the star A, it will see the star
A go supernovae before it sees the star B explode.5 This does not quite break
simultaneity yet, since we could just adjust for the time it takes for the light
travel and still maintain the belief that events are inherently occurring at same
time.

Now, let’s say the observer is once again centered in between the stars, but
moves towards the star A at a relativistic speed v. For a stationary observer (ie.
v = 0), the light (by definition) should reach the observer at the same time.6

For a moving observer (ie. v ̸= 0), this is not the case. To understand this, con-
sider the finite (constant) speed of light. Within the time it takes for the light
from star A to reach the observer’s original distance, the observer has already
passed it since it is moving in that direction. So, the light from star A requires
a shorter amount of time to arrive at the observer. Similarly, the observer will
have moved away from star B, making the light from star B require a longer
time to arrive at the observer. Thus, an observer moving towards star A will
see it explode first, before star B. Thus, simultaneity is frame-dependent.

If we track the mathematics through this argument (See Helliwell [2010] section
6.3 for the details), we would find that: If we synchronize clocks A and B at
rest and measure a proper length l between them, then an observer moving at
speed v towards A will observe it have a time

tA =
vl

c2
(3)

when tB = 0. When using this equation in problem sets, take care to properly
analogue the situation.

1.5 Problem Solving Strategies in SR

Many problems from special relativity arise from a misuse of frames in equations.
A straightforward strategy to combat this is to go through a few basic steps:

1. Define the frames you will use

2. List what you know and what you do not know, in each frame

5If, of course, the observer does not first die from the intense radiation from being right
next to a supernova.

6We call the supernovae ”synchronized” in this frame.
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3. Find unknowns using appropriate frame changes and physical relations
within frames.

It is important that you only use relations such as v = ∆x
∆t , within a single

frame. Then, you can use time dilation, length contraction, etc.7 to trans-
form the quantity to the target frame. A useful way to keep track of this is
to denote frames with primes or tildes. For example, t may be the time as ob-
served by observer O and t′ is the same quantity but as observed by observer O’.

Also, consider carefully what is and what is not a proper frame. Namely, a
proper frame (or “rest frame”) is the frame in which a measured quantity is at
rest. This implies, through the time dilation and length contraction formulae
that times measured in the rest frame (called “proper time”) are minimal and
that lengths measured in the rest frame (called “proper lengths”) are maximal.

For quantitative questions and those relating to paradoxes, consider first whether
there is relativity of simultaneity. Many so called “paradoxes” arise from for-
getting this fact. Moreover, remember that in special relativity, there is no such
thing as perfectly rigid objects. This is because, the speed of sound (ie. the
natural speed of density perturbations) in the material must necessarily be finite
and less than the speed of light.

2 Example: Λ Particle

Problem (Helliwell [2010] prob. 4.9): A Λ particle created in a high-energy
collision moved at v = 0.99c in the lab and traveled 55 cm before decaying.
What was its lifetime in its own rest frame?

There are two frames to consider: The lab (denote with primes) and the Λ
particle (denote without primes). In the frame of the lab, the particle had a
lifetime of

∆t′ =
∆x′

v
=

0.55 m

0.99 (3.00× 108 m/s)
= 1.85× 10−9 s

To get this in the frame of the Λ particle, we can use the time dilation equation,
where ∆t (in the frame of the particle) is the proper time. Thus,

∆t =

√
1− v

c

2
∆t′ =

√
1− (0.99)2 (1.85× 10−9 s) = 2.6× 10−10 s

So, the lifetime of the Λ particle in its own rest frame is 2.6× 10−10 s.

7This will eventually be combined into one type of transformation: Lorentz boosts.
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3 Example: North Pole

Problem (Helliwell [2010] prob. 4.13): Take two identical clocks. Set one on an
ice floe at the North Pole and the other on Isla Santiago, one of the Galapagos
Islands, in the Pacific Ocean, right on the equator. The clock at the North Pole
is nearly inertial (neglecting the fact that the Earth orbits the Sun, the Sun
orbits the galactic nucleus, etc.). A clock at rest on Isla Santiago is not inertial,
since it circles Earth’s center every 24 hours. According to time dilation, this
clock should run slow compared to the clock at the North Pole. What fraction
of a second does the Isla Santiago clock lose per day? Note that Earth’s radius
is 6400 km.

There are two frames: The inertial frame of the North Pole (denote O) and the
non-inertial frame of Isla Santiago (denote O’). We can approximate the frame
of Isla Santiago as being inertial since the acceleration is very low. Since the
radius is R = 6400 km and the period of rotation is T = 24 hours, we can find
the tangential velocity v

v =
2πR

T
=

2π(6400 km)

24 hours
≈ 465 m/s

Then, we can use the time dilation formula with the North Pole as the proper
frame to get

∆t ≈ ∆t′√
1− (v/c)2

where ∆t′ = 24 hours and v = 465 m/s. Therefore, the amount that the Isla
Santiago clock loses everyday is

∆t−∆t′ ≈ ∆t′

(
1√

1− (v/c)2
− 1

)

However, typing this in a calculator will not work precisely since this the first
term in the parentheses is very close to 1. Therefore, we can approximate using
the binomial expansion (generally, (1 + x)n ≈ 1 + nx for small x) and get that

1√
1−(v/c)2

≈ 1 + 1
2

(
v
c

)2
∆t−∆t′ ≈ ∆t′

2

(v
c

)2
≈

24 hours× 3600 s
1 hour

2

(
465 m/s

3.00× 108 m/s

)2

≈ 1.04× 10−7 s

Therefore, to first order, the amount that the Isla Santiago clock loses per day
is 1.04× 10−7 s.
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4 Example: Rogue Planet

Problem (Helliwell [2010] prob. 5.3): A rogue planet from a distant galaxy
passes by Earth. If the planet’s rest frame diameter is 9,000 km and it passes
by a single Earth clock in time 0.04 s, how fast is the planet moving relative to
Earth?

Again, there are two frames: The rogue planet (denote without primes) and the
Earth (denote with primes).8 The length of the rogue planet is l = 9000 km,
according to the rogue planet frame and let it be l′ in the Earth frame. The
change in time is ∆t′ = 0.04 s. We have that l′ ≡ v′∆t′, where v′ is the speed
of the rogue planet in the frame of Earth. Using the length contraction formula
we get that

v′∆t′ = l′ = l

√
1−

(
v′

c

)2

With some algebra, we can solve for v′

v′ =
l√

(∆t′)2 + (l/c)2
=

9000 km√
(0.04 s)2 + (9000 km)2/(3.00× 108 m/s)2

= (3/5)c

So the speed of the planet relative to Earth is (3/5)c.

5 Example: Synchronized Clocks

Problem (Helliwell [2010] prob. 6.1): Two clocks have been previously syn-
chronized in our frame of reference. We stand beside one and look at the other,
which is d = 30 m away. (a) What will the other clock appear to read when the
clock beside us reads t = 0? (b) Now the distant clock is carried to us at the
constant speed v = 30 m/s. By how much will the two clocks differ when they
are side-by-side?

a) To synchronize the clocks, light must travel from one clock to the other.
Thus, from our point of view, we are effectively looking backwards in time at
the other clock. The other clock will therefore read (according to us) t = −d

c =
− 30 m

3.0×108 m/s = −1.0× 10−7 s.

b) According to us, the far clock is moving at v = 30 m/s and traverse a distance
of d = 30 m, so our clock will change by ∆t = d

v = 1 s. The far clock will observe

8Note that my choice of prime frames and non-prime frames is completely arbitrary, but I
typically like to keep the non-prime frame as the proper frame for some important quantity.
In this case, the length of the rogue planet.
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the distance between us as d′ = d

√
1−

(
v
c

)2
due to length contraction. It will

therefore observe itself take a time interval of ∆t′ = d′

v = d
v

√
1−

(
v
c

)2
to reach

us. Thus, there will be a difference between the clocks of

|∆t−∆t′| = d

v

(
1−

√
1−

(v
c

)2)

Since v is small, we can use the binomial expansion to get

|∆t−∆t′| ≈ d

v

(
1− 1

2

(v
c

)2
− 1

)
=

vd

2c2
= 5.0× 10−15 s

Thus, there is a difference in the time of the clocks by about 5.0× 10−15 s.

6 Example: Colliding Elephants

Problem (adapted from Faraoni [2013]): A rigid cage containing two elephants
equipped with jet-packs is plummeting straight down towards the ground at
relativistic speeds. Relative to the cage, the elephants, aligned vertically, de-
cide to engage their jetpacks for a moment and collide into one another for fun.
With perfect elastic collision, they bounce backwards and hit the walls of the
cage. In the cage frame, they hit the walls at the same time and no momentum
is imparted to the bulk of the cage. However, in the frame of the ground, the
top wall hits its elephant before the bottom wall does, due to the additional
motion of the cage (relativity of simultaneity). The ground must therefore see
a momentary jerk in upwards and then downwards when the elephants hit their
walls. Since the cage would experience a change in velocity in the perspective
of the ground, but the ground does not change velocity in the perspective of
the cage, this seems to violate the principle of relativity. What is going on here?

The issue arises from the fact that perfectly rigid objects do not exist in special
relativity. In a material, in order for one end of the object to communicate that
it has moved to the other, it must send a density perturbation to the other side,
limited by the speed of sound in the material. A perfectly rigid object would
therefore have an infinite speed of sound. However, in special relativity, the
speed of sound in the material cannot be faster than the speed of light. There
must thus be some delay time between when the top wall of the cage propagates
the information that it has moved (in the form of a density wave) to the bottom
of the cage and vice versa. Thus, the cage will effectively momentarily stretch,
not jerk up and down.
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