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1 The Language of Quantum Mechanics: Linear Algebra

There is a nice way of representing quantum mechanics that we can represent using linear algebra. First,
let’s review the basics.

1.1 Linear Algebra Basics

A linear vector space is defined as a set V of vectors |v⟩ coupled with addition and vector-scalar multiplication
operations, with the following properties (let |u⟩, |v⟩, and |w⟩ be vectors in V and α, β be scalars in e.g. C):

1. The set V is closed under linear combinations (combinations of vector addition and vector-scalar
multiplication). This means that if |u⟩ and |v⟩ are in V, then a linear combination of them (α |u⟩+β |v⟩)
is also in V .

2. Vector addition is associative: (|u⟩ + |v⟩) + |w⟩ = |u⟩ + (|v⟩ + |w⟩)

3. Vector addition is commutative: (|u⟩ + |v⟩) = |v⟩ + |u⟩

4. There exists a unique identity vector |0⟩ such that: |u⟩+ |0⟩ = |u⟩

5. Every vector |v⟩ has an additive inverse − |v⟩ such that: |v⟩+− |v⟩ = |0⟩

6. Vector-scalar multiplication is associative: α(β |u⟩) = (αβ) |u⟩

7. Vector-scalar multiplication is distributive over addition in the regular ways: α(|u⟩+|v⟩) = α |u⟩+α |v⟩
and (α+ β) |u⟩ = α |u⟩+ β |u⟩

For example, 3-dimensional real space R forms a vector space. Note that the set V has infinite elements
even if we have a finite basis of vectors. However, we can also have an infinite number of basis vectors. This
is the case for many situations in quantum mechanics.

Note that you can also define scalars more generally than just complex or real numbers too (e.g. in the
context of a mathematical field), but we don’t really have to worry about that for our use here. Now, on to
a few more definitions.

A set of vectors {|vn⟩} is linearly independent if we cannot get the identity vector through some nontrivial
linear combination of all of them. Namely, if

∑
n=0 αn |vn⟩ = |0⟩ where not all αn = 0.

If a vector space is N -dimensional, then any set of N linearly independent vectors forms a basis. These
basis are important because they allow you to form any other vector in the space with a countable number
of vectors.

We can also define an inner product ⟨x|y⟩ of two vectors |x⟩ and |y⟩ in some vector space as satisfying the
following properties:
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1. Conjugate symmetry: ⟨x|y⟩ = ¯⟨y|x⟩

2. Linearity: ⟨ax+ by|z⟩ = a ⟨x|z⟩+ b ⟨y|z⟩

3. Positive-definite: ⟨x|x⟩ > 0 if x ̸= 0

In principle, this can be defined anyway you want, so long as it satisfies the above properties. However, for
our use we will most just have two forms. Namely, the usual form you are used to whenever vectors are
represented by a list of numbers |a⟩ = A1 |1⟩+A2 |2⟩+ ...+AN |N⟩ and |b⟩ = B1 |1⟩+B2 |2⟩+ ...+BN |N⟩
for some basis {|1⟩ , |2⟩ , ..., |N⟩}, giving

⟨a|b⟩ = A∗
0B0 +A∗

1B1 + ... (1)

And, also one that may be new to you which is for functions f(x) and g(x) in some vector space we can
define the inner product as

⟨f |g⟩ =
ˆ b

a

f(x)∗g(x)dx (2)

Indeed, we can often represent functions themselves as vectors in some space with an infinite-dimensional
basis. This basis could be many things. For example, we know from calculus that we can represent any
smooth1 function within some range by an infinite series of polynomials (think Taylor series). This means
that {1, x, x2, ...} is a basis of the vector space containing all smooth functions. Moreover, we know from
Fourier analysis that we can equally represent all smooth functions by an infinite series of sinusodial func-
tions, so {sinx, cosx, ...} is also a basis. The above inner product allows us to multiply these vectors. This
is particularly important to quantum mechanics since we are often dealing with an functions rather than
N -tuples of numbers. Such vector spaces are called Hilbert spaces. Now, just a bit more linear algebra
theory before connecting it back to QM.

The Schwarz inequality is

| ⟨f |g⟩ | ≤
√

⟨f |f⟩ ⟨g|g⟩ (3)

A vector |f⟩ is normalized if ⟨f |f⟩ = 1 and two vectors |f⟩ and |g⟩ are orthogonal if ⟨f |g⟩ = 0. We say a
set of vectors {fn} are orthonormal if ⟨fm|fn⟩ = δmn where δmn is the Kronecker delta (returns 1 if m = n
and 0 otherwise).

1.2 Quantum States as Vectors

As we saw above, we can represent functions as vectors in a vector space if we like. We know that the
quantum state is represented by the wavefunction and that these wavefunctions must be normalized. It
turns out that we can form a vector space of just the square-integrable functions. Practically, this means
that the wavefunction Ψ can be represented as a vector where ⟨Ψ|Ψ⟩ = 1 means it is normalized. Then, if
we have some basis of states |ψn⟩, then we can represent any wavefunction as ⟨ψ|ψ⟩ =

∑∞
n=1 cnψn for an

appropriate choice of cns. By Fourier transforms, we can also show that these coefficients are cn = ⟨ψn|ψ⟩.
You may notice that this is very similar to what we have been doing with stationary states.

In fact, in this language, the time-independent Schrödinger equation becomes H̄ |ψ⟩ = E |ψ⟩. Indeed, we can
now interpret finding the energy of a solution we are simply solving for the eigenvalues of the Hamiltonian.
We also note that the stationary states are the eigenvalues of the Hamiltonian.

In this language, expectation values of an operator Q̂ are simply
〈
Ψ
∣∣∣Q̂Ψ

〉
.2 Indeed, observables are rep-

resented with hermitian operators: operators Q̂ that satisfy
〈
ψ1

∣∣∣Q̂ψ2

〉
=

〈
Q̂ψ1

∣∣∣ψ2

〉
, for all ψ1 and ψ2.

The value of the eigenvalue . We can find, for instance, that the Hamiltonian is Hermitian and since its

1Smooth in this context means that all infinite-derivatives are continuous.
2Note that this is sometimes written as ⟨Ψ|Q̂|Ψ⟩.
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eigenvalue is the energy, then energy is an observable. We also call the eigenvalues of a Hermitian operator
determinate states.

We call the eigenbasis (set of eigenvalues) of an operator its spectrum. If the spectrum of an operator is
discrete, then the eigenfunctions are normalizable (and thus are physically realizable states). If the spectrum
is continous, then they are not normalizable. The best that can happen is instead Dirac orthonormality
where ⟨fp|fp′⟩ = δ(p− p′).

One can find a general form of the uncertainty principle between two operators where

σ2
Aσ

2
B ≥

(
1

2i

〈[
Â, B̂

]〉)2

(4)

It is clear that operators that commute are mutually observable. Those that do not are called incompatible
observables (e.g. x and p or E and t).

From this we can find the generalized Ehrenfest theorem:

d

dt
⟨Q⟩ = i

ℏ

〈[
Ĥ, Q̂

]〉
+

〈
∂Q̂

∂t

〉
(5)

This is particularly useful for finding expectation values just from the operators.

We can change from a basis {|en⟩} to a basis {|α⟩ , |β⟩ , ...} with |α⟩ =
∑

n ⟨en|α⟩ |en⟩, |β⟩ =
∑

n ⟨en|β⟩ |en⟩,
and so on. This can be nicely captured with the projection operator P̂ ≡

∑
n |en⟩ ⟨en| (so long as {|en⟩}

is orthonormal, and turns to an integral if it is a Dirac orthonormal continuous basis).

2 Recitation Problems

2.1 Custom Conceptual Exercise

We have learnt that set require a few conditions to be considered vector spaces. Namely, vectors must be
closed under linear combinations, have an identity vector, and inverse for all elements, that vector addition is
associative and commutative and that vector scale multiplication is associative and distributive in the usual
way.

a) Give an example of a process that is non-commutative but associative.

Answer: An example is matrix multiplication: AB ̸= BA, but (AB)C = A(BC).

b) Give an example of a process that is non-commutative and non-associative.

Answer: An example is the vector cross product. It is non-commutative since x̂× ŷ = ẑ but ŷ× x̂ = −ẑ. It
is non-associative since x̂× (x̂× ŷ) = x̂× ẑ = −ŷ, but (x̂× x̂)× ŷ = 0̂× ŷ = 0̂.

c) Give an example of a process that is commutative and non-associative.

Answer: An example is a process that returns the winner from rock paper scissors. Doing rock vs paper
gives the same result as doing paper vs rock, so it is commutative. It is non-associative since doing rock vs
paper first (returning paper) vs scissors, returns scissors, whereas paper vs scissors first (returning scissors)
vs rock, returns rock.

d) Does the set of positive real numbers R+ form a vector space under the usual addition and multiplication?
Why or why not?
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Answer: No, since there is no additive inverse.

e) Does the set of positive real numbers excluding zero R⊭\{⃗0} form a vector space under the usual addition
and multiplication? Why or why not?

Answer: No, since there is no identity.

f) Do angles ϕ ∈ [0, 2π] form a vector space under the usual addition and multiplication? Why or why not?

Answer: No, since it is not closed.

g) If we modify the last example such that we still consider angles ϕ ∈ [0, 2π] but now use modular addition
and multiplication (the regular addition/multiplication mod 2π), does this form a vector space? Why or
why not?

Answer: No, since it does not obey the distributive law c⊙ (ϕ1 ⊕ ϕ2) ̸= c⊙ ϕ1 ⊕ c⊙ ϕ2. A counterexample
is c = 1

2 and ϕ1 = ϕ2 = 3π
2 , the left side yields π

2 but the right yields 3π
2 .

2.2 Griffiths Problem 3.1

2.3 Griffiths Problem 3.2

2.4 Griffiths Problem 3.3

4


	The Language of Quantum Mechanics: Linear Algebra 
	Linear Algebra Basics
	Quantum States as Vectors

	Recitation Problems
	Custom Conceptual Exercise 
	Griffiths Problem 3.1
	Griffiths Problem 3.2
	Griffiths Problem 3.3


