
Physics 21
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Created by Jaeden Bardati

This homework will guide the student through the derivation of the matched filter, a very important
technique used in all kinds of experimental physics (including LIGO gravitational waveform fitting).

1 Relevant Mathematical Background

Recall that the inner product of a(t) and b(t) is defined as

⟨a|b⟩ ≡
∫ ∞

−∞
a∗(τ)b(τ)dτ (1)

Also, recall that the convolution of a(t) with b(t) is defined as

(a ∗ b)(t) ≡
∫ ∞

−∞
a(τ)b(t− τ)dτ (2)

Similarly, the cross-correlation of a(t) with b(t) can be defined as

Rba(t) ≡
∫ ∞

−∞
b∗(τ)a(τ + t)dτ (3)

where the star in the superscript denotes a complex conjugate.1 The auto-correlation function of a(t)
is simply defined as Ra(t) ≡ Raa(t).

(a) Show that Rba(t) = a(t)∗ b∗(−t). If we wanted to implement cross-correlation in practice, what could
we do instead?

Rba(t) ≡
∫ ∞

−∞
b∗(τ)a(τ + t)dτ

=

∫ ∞

−∞
b∗(τ ′ − t)a(τ ′)dτ ′ (τ ′ ≡ τ + t)

=

∫ ∞

−∞
a(τ ′)b∗(−(t− τ ′))dτ ′

= a(t) ∗ b∗(−t)

We can thus perform the cross-correlation of b(t) on a(t) by simply convolving a(t) with an inverted
window function b∗(−t).

(b) Explain why the cross-correlation sometimes called the “sliding inner product” by comparing their
definition equations. When are they equal?

1Note that the cross-corelation function is often denoted by a five-pointed star (a ⋆ b)(t) ≡ Rba(t). However, this is very
easy to confuse with the six-pointed star that denotes convolution, so we will avoid this here.
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Their connection is apparent when we consider

Rab(t) ≡
∫ ∞

−∞
a∗(τ)b(τ + t)dτ

Cross-correlation is therefore called the sliding inner product because it computes the inner product
of a with b offset by some independent variable t, which “slides” across its bounds. It is clear that
⟨a|b⟩ = Rab(0) (or equivalently, ⟨a|b⟩∗ = Rba(0)), so they are equal when t = 0.

(c) Show that the auto-correlation function is Hermitian. That is, Ra(−t) = R∗
a(t).

Ra(−t) ≡ Raa(−t)

=

∫ ∞

−∞
a∗(τ)a(τ − t)dτ

=

∫ ∞

−∞
a∗(τ ′ + t)a(τ ′)dτ ′ (τ ′ ≡ τ − t)

=

∫ ∞

−∞
(a∗(τ ′)a(τ ′ + t))∗dτ ′

=

(∫ ∞

−∞
a∗(τ ′)a(τ ′ + t)dτ ′

)∗

= R∗
a(t)

2 Guided Derivation

Matched filters are used extensively in signal analysis, particularly when you have a known signal that
you want to find in a very noisy data set. The basic idea behind it is that you compare a template signal
to your data x(t) which contains some true signal s(t) that you want to pick out with your template and
some noise n(t), such that the data you observe is x(t) = s(t) + n(t). The goal is to find some way to
“match” the template signal to the particular signal that we are looking for.

To do this, we will do some convolution operation on the given data x(t) with some filter h(t) to get a
new, convolved output y(t) = (x ∗ h)(t) which somehow distinguishes where the signal is in the data. We
want to “match” the filter h(t) to any given s(t). The way to do this is to choose the filter h(t) that
maximizes the signal-to-noise ratio (SNR) at a given t.

We will start the derivation by noting that we can split the output into a signal and noise part. Namely,
y(t) = (s ∗ h)(t) + (n ∗ h)(t) ≡ ys(t) + yn(t).

(d) Show that ys(t) =
1
2π

∫∞
−∞H(ω)S(ω)eiωtdω, where H(ω) and S(ω) are the Fourier transforms of h(t)

and s(t), respectively. Hint: Show that convolution in the time domain is equivalent to multiplication in
the frequency domain.
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We have that ys(t) ≡ (s∗h)(t). Its Fourier transform is ys(t) =
1
2π

∫∞
−∞ Ys(ω)e

iωtdω. Now, consider
the inverse transform of

Ys(ω) =
1

2π

∫ ∞

−∞
ys(t)e

−iωtdt

=
1

2π

∫ ∞

−∞

(∫ ∞

−∞
s(τ)h(t− τ)dτ

)
e−iωtdt

=
1

2π

∫ ∞

−∞
s(τ)

(∫ ∞

−∞
h(t− τ)e−iωtdt

)
dτ

=
1

2π

∫ ∞

−∞
s(τ)

(
H(ω)e−iωτ

)
dτ (shift property)

= H(ω)

(
1

2π

∫ ∞

−∞
s(τ)e−iωτdτ

)
≡ H(ω)S(ω) (S1)

Therefore, convolution in the time domain is multiplication in the frequency domain. So ys(t) =
1
2π

∫∞
−∞H(ω)S(ω)eiωtdω indeed.

Now, we will consider minimizing the signal to noise ratio (SNR) at some time t0. This is simply the ratio
of the power of output that is due to the signal compared to the averaged power of output that is noise.
Namely,

SNR(t0) =
|ys(t0)|2

E{|yn(t)|2}
(4)

(e) Using the above expression, rewrite the SNR as

SNR(t0) =
1

2π

|
∫∞
−∞H(ω)S(ω)eiωt0dω|2∫∞
−∞ |H(ω)|2Sn(ω)dω

(5)

where Sn(ω) ≡ |N(ω)|2 is the power spectral density of the noise. Hint: Use the Wiener-Khinchin
theorem, which says that we can write the expectation value of |a(t)|2 for a random process a(t) as

E{|a(t)|2} =
1

2π

∫ ∞

−∞
|A(ω)|2dω (6)

Using the Wiener-Khinchin theorem, we can write

E{|yn(t)|2} =
1

2π

∫ ∞

−∞
|Yn(ω)|2dω

=
1

2π

∫ ∞

−∞
|H(ω)N(ω)|2dω (from S1)

=
1

2π

∫ ∞

−∞
|H(ω)|2Sn(ω)dω
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We can therefore use what we derived above to get that

SNR(t0) =
|ys(t0)|2

E{|yn(t)|2}

=
( 1
2π )

2|
∫∞
−∞H(ω)S(ω)eiωt0dω|2

1
2π

∫∞
−∞ |H(ω)|2Sn(ω)dω

=
1

2π

|
∫∞
−∞H(ω)S(ω)eiωt0dω|2∫∞
−∞ |H(ω)|2Sn(ω)dω

(f) Using the Cauchy-Schwarz inequality |⟨a|b⟩|2 ≤ ⟨a|a⟩⟨b|b⟩, show that the signal to noise can be given
the upper bound

SNR(t0) ≤
1

2π

∫ ∞

−∞

|S(ω)|2

Sn(ω)
dω (7)

Thus, the h(t) that maximizes the SNR will be the one where the SNR equals this bound.

Writing out the Cauchy-Schwarz inequality in terms of frequency integrals gives∣∣∣∣∫ ∞

−∞
A∗(ω)B(ω)dω

∣∣∣∣2 ≤ (∫ ∞

−∞
|A(ω)|2dω

)(∫ ∞

−∞
|B(ω)|2dω

)
(S2)

Now, if we plug in A(ω) = H∗(ω)
√
Sn(ω)e

iωt0 and B(ω) = S(ω)√
Sn(ω)

, then we get

∣∣∣∣∫ ∞

−∞
H(ω)S(ω)eiωtdω

∣∣∣∣2 ≤ (∫ ∞

−∞
|H(ω)|2Sn(ω)dω

)(∫ ∞

−∞

|S(ω)|2

Sn(ω)
dω

)
So, this implies that

SNR(t0) =
1

2π

|
∫∞
−∞H(ω)S(ω)eiωt0dω|2∫∞
−∞ |H(ω)|2Sn(ω)dω

≤ S(ω)√
Sn(ω)

(g) Show that the upper bound is met if we set H(ω) = Ae−iωt0 S∗(ω)
Sn(ω)

for an arbitrary constant A.

We just need to substitute this directly into equation 5. Namely,

SNR(t0) =
1

2π

|
∫∞
−∞Ae−iωt0 S∗(ω)

Sn(ω)
S(ω)eiωt0dω|2∫∞

−∞ |Ae−iωt0 S∗(ω)
Sn(ω)

|2Sn(ω)dω

=
1

2π

|A|2|
∫∞
−∞

|S(ω)|2
Sn(ω)

dω|2∫∞
−∞ |A|2|e−iωt0 |2 |S(ω)|

2

Sn(ω)
dω

=
1

2π

∫ ∞

−∞

|S(ω)|2

Sn(ω)
dω

4



Thus, the inequality is indeed saturated when H(ω) = Ae−iωt0 S∗(ω)
Sn(ω)

.

Now we will consider white noise (i.e. uncorrelated, zero mean noise) and a real signal s(t). Doing so, we
can simplify this to H(ω) = e−iωt0S(−ω).

(h) Plug this expression for H(ω) back into ys(t) and show that it is just a simple autocorrelation function
ys(t) = Rs(t̃), with t̃ = t− t0.

We have that

ys(t) =
1

2π

∫ ∞

−∞
H(ω)S(ω)eiωtdω

=
1

2π

∫ ∞

−∞
eiω(t−t0)S(−ω)S(ω)dω

=
1

2π

∫ ∞

−∞
eiω(t−t0)S(−ω)

(∫ ∞

−∞
e−iωτs(τ)dτ

)
dω

=

∫ ∞

−∞
s(τ)

(
1

2π

∫ ∞

−∞
eiω(t−t0−τ)S(−ω)dω

)
dτ

=

∫ ∞

−∞
s(τ)

(
1

2π

∫ ∞

−∞
eiω(τ−t+t0)S(ω)dω

)
dτ

=

∫ ∞

−∞
s(τ)s(τ − t+ t0)dτ

=

∫ ∞

−∞
s(τ)s(τ − t̃)dτ (t̃ = t− t0)

≡ Rs(t̃)

(i) Therefore, show that y(t) = x(t) ∗ s(−t̃) and infer what h(t) equals when t0 = 0.

We can repeat the same process on yn(t) as on ys(t) above to find that

yn(t) =

∫ ∞

−∞
n(τ)s(τ − t̃)dτ

So, we have that

y(t) = ys(t) + yn(t)

=

∫ ∞

−∞
s(τ)s(τ − t̃)dτ +

∫ ∞

−∞
n(τ)s(τ − t̃)dτ

=

∫ ∞

−∞
x(τ)s(τ − t̃)dτ

=

∫ ∞

−∞
x(τ)s(−(t̃− τ))dτ

= x(t) ∗ s(−t̃)

Thus, since y(t) = x(t) ∗h(t), the matched filter is h(t) = s(−t̃) = s(−t+ t0) = s(−t), when t0 = 0.
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To recap, we found that the filter h(t) required to maximize the signal to noise ratio (SNR; the power
of the signal s(t) to the power of the noise n(t) in the observed data) in the convolution of the observed
data x(t) with that filter, is simply the time-inversion of the signal we expect to see somewhere in the
data. Another way of saying this is that, to extract the location of a template in a dataset, we compute
the cross-correlation of the template with that dataset. If we divide this by the noise estimate, we get the
signal to noise of our template in the dataset. An observed signal that appears like the template in the
dataset will appear as a peak in this SNR plot. You can apply this with something like numpy.correlate
in Python. You will do this in the corresponding Jupyter notebook part of this homework.
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