Derivation of the Matched Filter

Jaeden Bardati

February 2025

This homework will guide the student through the derivation of the matched
filter, a very important technique used in all kinds of experimental physics
(including LIGO gravitational waveform fitting).

1 Relevant Mathematical Background

Recall that the inner product of a(t) and b(t) is defined as

@ = [« @)

— 00

Also, recall that the convolution of a(t) and b(t) is defined as

(axb)(t) = / T At —)dr @)

— 00

Similarly, the cross-correlation of a(t) and b(t) is defined as

Rup(t) = /OO a* (T — t)b(r)dr (3)

—0o0

where the star in the superscript denotes a complex conjugate.! The auto-
correlation function of a(t) is simply defined as R, (t) = Rgq(t)-

(a) Show that for real functions, Ru,(t) = a(t) * b(—t). If we wanted to imple-
ment cross-correlation in practice, what could we do instead?

(b) Visually compare the inner product vs cross-correlation defintions. What
do you notice? Why is the cross-correlation sometimes called the ”sliding inner
product”?

(c) Show that the auto-correlation function is Hermitian. That is, Ri(f) =

Ra(—1).

INote that the cross-corelation function is sometimes denoted by a five-pointed star (a *
b)(t). However, this is very easy to confuse with the six-pointed star that denotes convolution,
so we will use the R, (t) notation here to avoid this confusion.

2 Guided Derivation

Matched filters are used extensively in signal analysis, particularly when you
have a known signal that you want to find in a very noisy data set. The basic
idea behind it is that you compare a template signal to your data z(t) which
contains some true signal s(t) that you want to pick out with your template and
some noise n(t), such that the data you observe is z(t) = s(t) + n(t). The goal
is to find some way to “match” the template signal to the particular signal that
we are looking for.

To do this, we will do some convolution operation on the given data x(t) with
some filter h(t) to get a new, convolved output y(t) = (z x h)(t) which somehow
distinguishes where the signal is in the data. We want to “match” the filter h(t)
to any given s(t). The way to do this is to choose the filter h(t) that maximizes
the signal-to-noise ratio (SNR) at a given t.

We will start the derivation by noting that we can split the output into a signal
and noise part. Namely, y(t) = (s x h)(t) + (n* h)(t) = ys(t) + yn(?).

(d) Show that y(t) = 5= [~ H(w)S(w)e™*dw, where H(w) and S(w) are the
Fourier transforms of h(t) and s(t), respectively. Hint: Recall that convolution
in the time domain is equivalent to multiplication in the frequency domain.

Now, we will consider minimizing the signal to noise ratio (SNR) at some time
to. This is simply the ratio of the power of output that is due to the signal
compared to the averaged power of output that is noise. Namely,

-~ E{lya ()}
Using the Wiener-Khinchin theorem, we can write the expectation value of
In(t)|? as

P} = o [Sufee (5)

where S,,(w) is the power spectral density of the noise.

(e) Using the above expression, rewrite the SNR as

1|2 H(w)S(w)e™" dw|?
SNR(to) = o f—oooo | H (o) S, (o) de (6)

Hint: The expectation value here acts only on n(t), not h(tg).

(f) Using the Cauchy-Schwarz inequality |(a|b)|? < (a|a)(b|b), show that the
signal to noise can be given the upper bound

L[]S(w)?
SNR(to) < o [e (1)

Thus, the h(t) that maximizes the SNR will be the one where the SNR equals
this bound.

(g) Show that the upper bound is met if we set H(w) = Aei“’to% for an

arbituary constant A.

Now we will consider white noise (i.e. uncorrelated, zero mean noise) and a real
signal s(t). Doing so, we can simplify this to H(w) = e S(—w).

(h) Plug this expression for H(w) back into y,(¢) and show that it is just a a
simple autocorrelation function y4(t) = Rs(t). Hint: Use a change of variable
t—to — t.

(i) Therefore, show that y(t) = z(t) x s(—t) and thus infer what h(t) equals.

To recap, we found that the filter h(t) required to maximize the signal to noise
ratio (SNR; the power of the signal s(t) to the power of the noise n(t) in the
observed data) in the convolution of the observed data x(t) with that filter, is
simply the time-inversion of the signal we expect to see somewhere in the data.
Another way of saying this is that, to extract the location of a template in a
dataset, we compute the cross-correlation of the template with that dataset. If
we divide this by the noise estimate, we get the signal to noise of our template
in the dataset. An observed signal that appears like the template in the dataset
will appear as a peak in this SNR plot. You can apply this with something like
numpy .correlate in Python. You will do this in the corresponding Jupyter
notebook part of this homework.

