

5 Particle Behaviour Near a Capacitor

Imagine that you have a particle with charge $q > 0$ and mass m inside a sufficiently large parallel plate capacitor with a negatively charged plate at $x = 0$ and a positively charged plate at $x = d$.

(a) Justify using the following potential function and find α in terms of q and the electric field E .

$$V(x) = \begin{cases} \infty & \text{if } x \geq d \\ \alpha x & \text{if } 0 < x < d \\ \infty & \text{if } x \leq 0 \end{cases} \quad (12)$$

Hint: Recall that the electric force on a particle of charge q is $F = q\mathbf{E}$ and that the \mathbf{E} field inside a sufficiently large capacitor is constant.

(b) Will this potential yield bound states, scattering states, or both? Explain.

(c) Using the time-independent Schrödinger equation, find a general expression for the wavefunction of a quantum system in this potential. *Hint: Write your answer in terms of “Airy functions” $\text{Ai}(z)$ and $\text{Bi}(z)$ which are the two linearly independent solutions of $y'' - zy = 0$. See Figure 1 for a diagram.*

(d) Now, assume that the particle is close enough to the capacitor at $x = 0$ for it to be a good approximation to ignore the far plate barrier (i.e. $x \ll d$), giving the simpler potential

$$V(x) = \begin{cases} \alpha x & \text{if } x > 0 \\ \infty & \text{if } x \leq 0 \end{cases} \quad (13)$$

Note that your previous answers will remain correct. Knowing that $\text{Ai}(x \rightarrow \infty) = 0$ and $\text{Bi}(x \rightarrow \infty) = \infty$, enforce the boundary condition that $\psi(x \rightarrow \infty) = 0$. Then, enforce $\psi_n(0) = 0$ to find an implicit expression for the energy levels E_n using the $x \rightarrow -\infty$ airy function approximations:

$$\text{Ai}(-z) \approx \frac{1}{\sqrt{\pi} z^{1/4}} \sin \left(\frac{2}{3} z^{3/2} + \frac{\pi}{4} \right) \quad (14)$$

$$\text{Bi}(-z) \approx \frac{1}{\sqrt{\pi} z^{1/4}} \cos \left(\frac{2}{3} z^{3/2} + \frac{\pi}{4} \right) \quad (15)$$

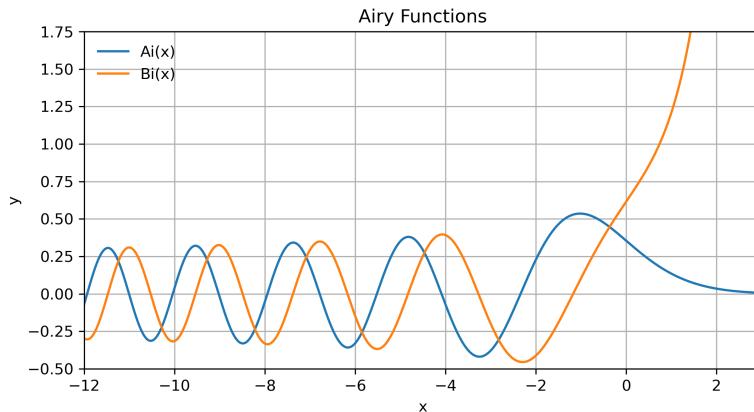


Figure 1: Airy functions of the first and second kind.